Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Algorytmy sztucznej inteligencji pomogą lekarzom, ale ich nie zastąpią

Recommended Posts

Dr inż. Marcin Sieniek jest absolwentem Akademii Górniczo-Hutniczej w Krakowie i tamtejszego Uniwersytetu Ekonomicznego. Na AGH otrzymał również doktorat z informatyki za badania w dziedzinie nauk obliczeniowych. W Google Health zajmuje się pracą nad zastosowaniem sztucznej inteligencji w diagnozie raka piersi. Oprócz Google pracował w zespole Autopilota Tesli oraz prowadził w Polsce startup z dziedziny social learning. Prywatnie gra w zespole rockowym i prowadzi bloga expat-pozytywnie.pl.

Jak trafia się do Google Health i dlaczego właśnie tam? To dość niszowa działka w działalności Google'a czy Alphabetu i wymagająca chyba szczególnych umiejętności?

W Google Health pomocne są przede wszystkim różnorodne umiejętności i doświadczenia. W Google pracuję od ponad 5 lat, początkowo jako inżynier oprogramowania w polskim biurze firmy. Jednak już od samego początku pracowałem nad wykorzystywaniem sztucznej inteligencji, a konkretniej określonych technik - tzw. uczenia maszynowego. Później kontynuowałem pracę nad moimi projektami w amerykańskich biurach Google. Dopiero wtedy, szukając ciekawych wyzwań wewnątrz firmy, znalazłem możliwość dołączenia do Google Research - działu firmy skupiającego się na badaniach nad rozwojem sztucznej inteligencji i jej wykorzystaniem w różnych dziedzinach życia.

Tam powstawał właśnie mały zespół badawczy zajmujący się zastosowaniem głębokiego uczenia maszynowego właśnie w radiologii. Proces selekcji do zespołu był wymagający - sprawdzano m.in. znajomość technik sztucznej inteligencji oraz udokumentowane doświadczenie w badaniach biotechnologicznych co akurat zupełnie przypadkiem było przedmiotem jednej z moich prac na studiach doktoranckich.

Pod koniec 2018 roku mój zespół stał się częścią nowego działu Google Health - łączącego w sobie nie tylko inżynierów oprogramowania, ale także doświadczenie i wiedzę lekarzy, prawników, etyków i specjalistów od procedur medycznych.

Jest Pan jednym ze współtwórców algorytmu, który lepiej diagnozuje raka piersi niż lekarze. Jak powstaje i działa taki algorytm?

Algorytm taki powstaje podobnie jak np. technologia która pozwala rozpoznawać co znajduje się na zdjęciu. Algorytm sztucznej inteligencji jest „szkolony” na istniejącym zbiorze danych, gdzie obrazom (w tym wypadku medycznym, czyli zdjęciom z mammografii) towarzyszą oznaczenia (w tym wypadku: czy wykryto nowotwór złośliwy i ewentualna informacja o jego umiejscowieniu). Takie zbiory danych powstają w ramach normalnej praktyki w szpitalach i centrach programów przesiewowych, jednak często na tym ich zastosowanie się kończy.

Takie algorytmy działają na bazie mechanizmu zwanego „sieciami neuronowymi”. Ich struktura inspirowana jest tym w jaki sposób informacje przetwarza ludzki mózg. Proces nauki przypomina w istocie proces w którym człowiek uczy się rozróżniać obrazy (np. dziecko rozpoznawać koty i psy, a radiolog rozpoznawać groźne guzy od nieszkodliwych zmian). W odróżnieniu jednak od radiologa, który w toku treningu może zobaczyć kilkadziesiąt-kilkaset nowotworów, komputer jest w stanie przetworzyć dziesiątki tysięcy przykładów w przeciągu jedynie kilku godzin.

Taki „wytrenowany” algorytm stosuje się następnie do oceny osobnego, nowego zbioru danych. Następnie inżynierowie mogą wprowadzić poprawki w procesie uczenia się albo w budowie modelu i powtórzyć testy. Dopiero gdy wyniki działania modelu zadowalają jego twórców, sprawdza się go na kolejnym zbiorze danych, np. pochodzących z innej instytucji lub z innego źródła.
Na tym właśnie etapie postanowiliśmy opublikować nasz artykuł w Nature.

Na tym jednak nie kończymy pracy. Zanim taki model znajdzie praktyczne zastosowanie w szpitalach na całym świecie, muszą zostać przeprowadzone próby kliniczne i o na różnych populacjach pacjentów, musimy także ocenić skuteczność modelu na danych pochodzących z innych aparatów mammograficznych.

Niejednokrotnie informowaliśmy o systemach SI radzących sobie w pewnych zadaniach lepiej od lekarzy. Skąd się bierze ta przewaga sztucznej inteligencji?

Warto powiedzieć, że to „potencjalna” przewaga. Raczej patrzymy na to jako na wsparcie i usprawnienie procesów diagnostycznych lekarzy. To potencjalne usprawnienie bierze się kilku źródeł: po pierwsze, w procesie uczenia się algorytm może przeanalizować dużo więcej przypadków niż pojedynczy lekarz w procesie nauki (z drugiej strony ludzie wyciągają wnioski szybciej – maszyna potrzebuje więcej przykładów). Co więcej automat nie ma skłonności do zaspokojenia swoich poszukiwań jednym „znaleziskiem” i jest mniejsze ryzyko, że umknie mu inne, często ważniejsze. Wreszcie, system sztucznej inteligencji pozwala na „nastrojenie” go na pożądany przez daną placówkę medyczną poziom czułości i swoistości.


« powrót do artykułu

Share this post


Link to post
Share on other sites
21 godzin temu, KopalniaWiedzy.pl napisał:

Skąd się bierze ta przewaga sztucznej inteligencji?

Z inteligencji.

21 godzin temu, KopalniaWiedzy.pl napisał:

Raczej patrzymy na to jako na wsparcie i usprawnienie procesów diagnostycznych lekarzy.

Po co ich zawczasu stresować.

Share this post


Link to post
Share on other sites
Cytat

Czy, Pana zdaniem, istnieją szanse, że jeszcze za naszego życia SI przewyższy lekarzy w każdej dziedzinie związanej z medycyną?

Zdecydowanie nie. Odczyt obrazów medycznych to jedno z bardziej żmudnych i powtarzalnych zadań lekarzy. Nawet w radiologii, praca specjalisty jest dużo bardziej złożone niż tylko interpretacja obrazu. Np. radiologowie korelują zmienne kliniczne z obrazami, kontaktując się nieraz z lekarzem prowadzącym celem zrozumienia kontekstu pacjenta, uczestniczą w tzw. przedoperacyjnych konferencjach multidyscyplinarnych, przeprowadzają interwencje sterowane radiologicznie itd.

A moim zdaniem zdecydowanie nie wiadomo. Może się równie dobrze okazać że nastąpi to za 30 lat. 

"Korelowanie zmiennych klinicznych z obrazami" to jest dość ogólne stwierdzenie i na dodatek algorytmy robią to lepiej niż ludzie, kwestia tylko odpowiedniej dostępności do danych. 

Zrozumienie kontekstu pacjenta i te konferencje to faktycznie może być trudne do zastąpienia ale takie sytuacje są rzadkie - lekarz określa jednostke chorobową na podstawie kryteriów diagnostycznych a ten proces można spokojnie zautomatyzować. poza tym co oni robią na tych konferencjach przedoperacyjnych? Dyskutują nad taktyką , a nie nad tym jaka jest diagoza czy wynik obrazowania, także szkolenie radiologia tylko po to aby się wypowiedział na temat taktyki prowadzenia operacji jest chyba troszkę nad wyrost. Co do interwencji operacyjnych pod kontrolą radiologiczną - to też nie widzę problemy aby inne SI się tym zajmowało - kwestia odpowiedniej mocy obliczeniowej do analizy obrazu na bieżąco etc. więc człowiek może być przez długi czas tańszy. Natomiast jeśli chodzi o samą diagnostykę - czyli główne zajęcie radiologa, to będzie to jedna z pierwszych specjalizacji które staną się zbędne. Chirurg wytrzyma najdłużej bo będzie tańszy niż robot + SI. Wydaje mi się że specjalizacje lekarskie się połączą i będą lekarze nadzorujący pewne procesy etc. ale poszczególne specjalne zadania jak opis wyników radiologii, EKG, diagnozowanie chorób i dopasowywanie leków etc. będą robić SI i to już niedługo (10 lat temu w ogóle temat SI nie istniał w mainstremie). Lekarze przyszłości wejdą bardziej na metapoziom w stosunku do tego co jest teraz (czyli przestaną być radiologami, kardiologiami etc.). Obecnie ten metapoziom jest nie obsadzony dlatego nie ma żadnej nawigacji medycznej etc. 

Share this post


Link to post
Share on other sites

Może algorytmy nie zastąpią wysokiej klasy specjalistów ale 90% lekarzy których spotkałem można spokojnie zastąpić algorytmem napisanym w Microsoft Basicu na commodore c64.

Share this post


Link to post
Share on other sites
W dniu 20.02.2020 o 15:52, Warai Otoko napisał:

Lekarze przyszłości wejdą bardziej na metapoziom w stosunku do tego co jest teraz

To jest coś coś z czym SI poradzi sobie wielokrotnie lepiej i taniej, lekarze niedomagają najbardziej właśnie na takim metapoziomie.

W dniu 20.02.2020 o 15:52, Warai Otoko napisał:

Zdecydowanie nie. Odczyt obrazów medycznych to jedno z bardziej żmudnych i powtarzalnych zadań lekarzy.

To brzmi jak żart. Zakładając że to cytat z tego wywiadu, to jest to żart podwójny.

W dniu 20.02.2020 o 17:02, Astro napisał:

Wzór do naśladowania to nie jest. Następna taka bohaterka zerwie kulkę.

Share this post


Link to post
Share on other sites
W dniu 22.02.2020 o 09:48, peceed napisał:

To jest coś coś z czym SI poradzi sobie wielokrotnie lepiej i taniej, lekarze niedomagają najbardziej właśnie na takim metapoziomie.

Owszem, ale właśnie nie od razu poradzi sobie taniej i lepiej. Najpierw powstaną i powstają już SI specjalizowane, dopiero później powstaną meta-SI potrafiące żonglować tymi "wąskimi". Dlatego lekarze zostaną "zepchnięci" na ten metapoziom, bo nie będzie jeszcze SI które lepiej i taniej to zrobią (podejrzewam, ze głównym problemem będzie agregacja danych). Co nie znaczy że w dalszej przyszłości SI nie zastąpi lekarzy (i nie tylko) całkowicie. Opisuje pewne etapy procesu zmian. 

 

W dniu 22.02.2020 o 09:48, peceed napisał:
W dniu 20.02.2020 o 15:52, Warai Otoko napisał:

Zdecydowanie nie. Odczyt obrazów medycznych to jedno z bardziej żmudnych i powtarzalnych zadań lekarzy.

To brzmi jak żart. Zakładając że to cytat z tego wywiadu, to jest to żart podwójny.

Informacja dla innych użytkowników - ja tego nie napisałem, jest to cytat z cytatu :P

Edited by Warai Otoko

Share this post


Link to post
Share on other sites
Godzinę temu, Warai Otoko napisał:

Owszem, ale właśnie nie od razu poradzi sobie taniej i lepiej. Najpierw powstaną i powstają już SI specjalizowane, dopiero później powstaną meta-SI potrafiące żonglować tymi "wąskimi"

Tutaj widzę echa jakiegoś przekonania, że obcowanie z wiedzą medyczną wymaga specjalnego namaszczenia. Tymczasem to wiedza jak każda inna.
AI mogące działać na poziomie meta już są. Wystarczy zobaczyć co się dzieje z branżą call-center.

Godzinę temu, Warai Otoko napisał:

Dlatego lekarze zostaną "zepchnięci" na ten metapoziom

Aby być zepchniętym trzeba mieć kwalifikacje, co w przypadku lekarzy wymagałoby zrobienia nowej specjalizacji. 

Godzinę temu, Warai Otoko napisał:

bo nie będzie jeszcze SI które lepiej i taniej to zrobią

AI jest już tańsza od zwykłego pracownika w call center.

Godzinę temu, Warai Otoko napisał:

podejrzewam, ze głównym problemem będzie agregacja danych

Jasne, bo pan lekarz szybciej ogarnie w głowie "papierki" dotyczące określonego pacjenta od SI. Chyba tylko jak będzie je miał w komputerze w specjalnej aplikacji.

Edited by peceed

Share this post


Link to post
Share on other sites
Teraz, peceed napisał:

Tutaj widzę echa jakiegoś przekonania, że obcowanie z wiedzą medyczną wymaga specjalnego namaszczenia.

Absolutnie nie trafiony domysł. 

1 minutę temu, peceed napisał:

Aby być zepchniętym trzeba mieć kwalifikacje, co w przypadku lekarzy wymagałoby zrobienia nowej specjalizacji. 

No i tak to własnie widzę. Będą się przekwalifikowywać powoli. 

2 minuty temu, peceed napisał:

Jasne, bo pan lekarz szybciej ogarnie w głowie "papierki" dotyczące określonego pacjenta od SI.

oczywiście że nie, chodzi o to że "Pan lekarz"  ma dostęp do wielu różnych danych z różnych źródeł - ich agregacja będzie wymagała sporo zachodu i środków, dlatego taki widzę okres przejściowy. Stworzyć model to pikuś w porównaniu do stworzenia systemu akwizycji i agregacji odpowiednich danych, mówię o kwestiach jakościowych. Dużo łatwiej jest to zrobić gdzie mamy jasne źródło danych - sygnał EKG, EEG, obraz MRI etc. natomiast co do "metadanych" należałoby najpierw stworzyć i przetestować system który odpowiednio repreznetowałby wszelkie potrzebne informacje kliniczne i inne i dopiero z takiego systemu można by pobierać dane z których można by takie modele budować. Nie wspomnę o zmianie infrastrukty informatycznej która by była do tego potrzebna + procedury medyczne. 

Share this post


Link to post
Share on other sites
1 minutę temu, Warai Otoko napisał:

należałoby najpierw stworzyć i przetestować system który odpowiednio repreznetowałby wszelkie potrzebne informacje kliniczne i inne i dopiero z takiego systemu można by pobierać dane z których można by takie modele budować.

W medycynie obieg informacji opiera się na dokumentach. Wypisy, opisy, diagnozy, itd. AI łyka to w ułamki sekund.
Nie potrzeba ręcznego budowania, formatów danych itd. Jesteśmy już na innym poziomie.

3 minuty temu, Warai Otoko napisał:

Nie wspomnę o zmianie infrastrukty informatycznej która by była do tego potrzebna

Dowolna komercyjna chmura. Odpowiedni software jest gotowy w tym sensie, że wymaga tylko konfiguracji.

13 minut temu, Warai Otoko napisał:

Będą się przekwalifikowywać powoli. 

Nie zdążą. Konie też nie wygrały z silnikiem spalinowym :P

Share this post


Link to post
Share on other sites
35 minut temu, peceed napisał:

W medycynie obieg informacji opiera się na dokumentach. Wypisy, opisy, diagnozy, itd. AI łyka to w ułamki sekund.
Nie potrzeba ręcznego budowania, formatów danych itd. Jesteśmy już na innym poziomie.

Owszem, ale AI nie wie co jest czym i do czego w jakim stopniu jest potrzebne. Dla AI to tylko dane. 

37 minut temu, peceed napisał:

Dowolna komercyjna chmura. Odpowiedni software jest gotowy w tym sensie, że wymaga tylko konfiguracji.

nie chodzi mi o system przetwarzania danych i przetsrzeń obliczeniową tylko o system wprowadzania tych danych i procedury żeby odpowiedneio to robić. 

38 minut temu, peceed napisał:

Nie zdążą. Konie też nie wygrały z silnikiem spalinowym

nie mówię że przyszłości lekarze nie skończą jak te "konie pociągowe" ale proces zmian może nie być tak gwałtowny jak sugerujesz. 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielki sukces inżynierów z Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy. Pierwszego lipca zespół Koła Naukowego Sonda - dr inż. Damian Ledziński, mgr inż. Sandra Śmigiel, mgr inż. Gracjan Kątek, mgr inż. Karol Hartwig i inż. Marta Gackowska - jako pierwszy w Polsce dokonał zdalnego lotu dronem online z niewyobrażalnej, jak do tej pory, odległości 333 km. Wydarzenie miało miejsce podczas tegorocznego konkursu DRONIADA GZM2020 w Katowicach.
      Dzięki wykorzystaniu chmury obliczeniowej i autorskiemu rozwiązaniu problemu, całość lotu drona była bezpośrednio sterowana i kontrolowana zza biurka znajdującego się w budynku kampusu UTP w bydgoskim Fordonie. W Katowicach dron został uruchomiony przez Dariusza Werschnera, prezesa Polskiej Izby Systemów Bezzałogowych, po czym bydgoscy naukowcy przejęli nad nim kontrolę i wykonali trzykrotnie pełną misję nad lotniskiem. Maszynę kontrolował algorytm. Zastosowane rozwiązanie umożliwia lot dronem każdego typu opartym o kontroler lotu PIXHAWK.
      Ta innowacyjna technologia tworzona jest przez zespół naukowców z Wydziału Inżynierii Mechanicznej i Wydziału Telekomunikacji, Informatyki i Elektrotechniki Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Autorzy badań opublikowanych na łamach PNAS ostrzegają, że nie można ufać technikom obrazowania medycznego rekonstruowanym za pomocą sztucznej inteligencji. Międzynarodowy zespół naukowy pracujący pod kierunkiem Andersa Hansena z Uniwersytetu w Cambridge stwierdził, że narzędzia do głębokiego uczenia się, które rekonstruują obrazy wysokiej jakości na podstawie szybkich skanów, tworzą liczne przekłamania i artefakty, które mogą wpływać na diagnozę.
      Jak niejednokrotnie informowaliśmy, systemy sztucznej inteligencji są już na tyle zaawansowane, że równie dobrze jak radiolodzy, a często i lepiej, potrafią opisywać zdjęcia RTG, obrazy tomografii komputerowej czy rezonansu magnetycznego. W związku z tym pojawił się pomysł, by SI zaprząc do rekonstrukcji obrazów.
      Pomysł polega na tym, by wykonywać obrazowanie o niższej rozdzielczości, czyli pobierać dane z mniejszej liczby punktów, a następnie, by wytrenowane systemy algorytmy sztucznej inteligencji rekonstruowały na tej postawie obraz o wysokiej rozdzielczości. W ten sposób można by zaoszczędzić czas i pieniądze potrzebny na wykonanie badania. Wykorzystywane tutaj algorytmy były trenowana na dużej bazie danych obrazów wysokiej jakości, co stanowi znaczne odejście od klasycznych technik rekonstrukcji bazujących na teoriach matematycznych.
      Okazuje się jednak, że takie systemy SI mają poważne problemy. Mogą one bowiem przegapić niewielkie zmiany strukturalne, takie jak małe guzy nowotworowe, podczas gdy niewielkie, niemal niewidoczne zakłócenia spowodowane np. poruszeniem się pacjenta, mogą zostać odtworzone jako poważne artefakty na obrazie wyjściowym.
      Zespół w skład którego weszli Vegard Antun z Uniwersytetu w Oslo, Francesco Renna z Uniwersytetu w Porto, Clarice Poon z Uniwersytetu w Bath, Ben Adcock z Simon Fraser University oraz wspomniany już Anders Hansen, przetestował sześć sieci neuronowych, wykorzystywanych do rekonstrukcji obrazów tomografii i rezonansu. Sieciom zaprezentowano dane odpowiadają trzem potencjalnym problemom, które mogą się pojawić: niewielkim zakłóceniom, niewielkim zmianom strukturalnym oraz zmianom w próbkowaniu w porównaniu z danymi, na których system był trenowany.
      Wykazaliśmy, że niewielkie zakłócenia, których nie widać gołym okiem, mogą nagle stać się poważnym artefaktem, który pojawia się na obrazie, albo coś zostaje przez nie usunięte. Dostajemy więc fałszywie pozytywne i fałszywie negatywne dane, wyjaśnia Hansen.
      Uczeni, chcą sprawdzić zdolność systemu do wykrycia niewielkich zmian, dodali do skanów niewielkie litery i symbole z kart do gry. Tylko jedna z sieci była w stanie je prawidłowo zrekonstruować. Pozostałe sieci albo pokazały w tym miejscu niewyraźny obraz, albo usunęły te dodatki.
      Okazało się też, że tylko jedna sieć neuronowa radziła sobie ze zwiększaniem tempa skanowania i tworzyła lepszej jakości obrazy niż wynikałoby to z otrzymanych przez nią danych wejściowych. Druga z sieci nie była w stanie poprawić jakości obrazów i pokazywała skany niskiej jakości, a trzy inne rekonstruowały obrazy w gorszej jakości niż otrzymały do obróbki. Ostatni z systemów nie pozwalał na zwiększenie szybkości skanowania.
      Hansen stwierdza też, że badacze muszą zacząć testować stabilność takich systemów. Wówczas przekonają się, że wiele takich systemów jest niestabilnych. Jednak największym problemem jest fakt, że nie potrafimy w sposób matematyczny zrozumieć, jak działają tego typu systemy. Są one dla nas tajemnicą. Jeśli ich porządnie nie przetestujemy, możemy otrzymać katastrofalnie złe wyniki.
      Na szczęście takie systemy nie są jeszcze wykorzystywane w praktyce klinicznej. Zespół Hansena stworzył odpowiednie testy do ich sprawdzenia. Uczeni mówią, że nie chcą, by takie systemy zostały dopuszczone do użycia jeśli nie przejdą szczegółowych testów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stworzony przez NVIDIĘ algorytm sztucznej inteligencji GameGAN był w stanie samodzielnie stworzyć grę PAC-MAN. System nie miał dostępu do kodu gry. Zaprezentowano mu jedynie 50 000 fragmentów wideo. Na tej podstawie sztuczna inteligencja samodzielnie stworzyła w pełni funkcjonalną warstwę graficzną PAC-MANa.
      PAC-MAN to jedna z najpopularniejszych gier komputerowych. Ta klasyka wirtualnej rozrywki powstała przed 40 laty w Japonii. Podbiła świat w czasach salonów gier i automatów.
      Osiągnięcie inżynierów NVIDII oznacza, że nawet bez znajomości podstawowych zasad rozgrywki ich algorytm jest w stanie samodzielnie je zrekonstruować oraz stworzyć własną grę. GameGAN to pierwsza sieć neuronowa, która wykorzystuje technologię GAN (generatywne sieci współzawodniczące) do stworzenia gry. GAN korzysta z dwóch niezależnych sieci neuronowych. Jedna to dyskryminator, druga zwana jest generatorem. Obie współzawodniczą ze sobą.
      Zwykle sieci neuronowe uczą się np. rozpoznawać koty na zdjęciach dzięki przeanalizowaniu olbrzymiej liczby zdjęć kotów. Metoda ta jest po pierwsze czasochłonna, po drugie zaś wymaga, by wszystkie użyte do treningu zdjęcia zostały ręcznie prawidłowo oznaczone przez człowieka. Dopiero po analizie olbrzymiej bazy danych sieć jest w stanie rozpoznać kota na zdjęciu, z którym wcześniej nie miała do czynienia. GAN wymaga znacznie mniej czasu i pracy. w tej koncepcji generator stara się stworzyć zdjęcie kota jak najbardziej przypominającego kota, a dyskryminator przegląda zdjęcia kotów i decyduje, które jest prawdziwe, a które fałszywe. W wyniku tego współzawodnictwa generator tworzy coraz doskonalsze zdjęcia, a dyskryminator coraz lepiej rozpoznaje koty.
      Teraz po raz pierwszy technika taka została użyta do stworzenia nadającego się do użycia funkcjonalnego layoutu gry. Chcieliśmy sprawdzić, czy sztuczna inteligencja jest w stanie nauczyć się reguł obowiązujących w środowisku jedynie patrząc na przebieg gry. I to jej się udało, mówi główny autor projektu Seung-Wook Kim.
      Osiągnięcie inżynierów NVIDII oznacza, że autorzy gier będą mogli wykorzystać sztuczną inteligencję do szybszego i łatwiejszego tworzenie kolejnych jej etapów, a badacze sztucznej inteligencji będą łatwiej mogli stworzyć symulatory do treningu autonomicznych systemów. W przyszłości w ten sposób mogą powstać systemy sztucznej inteligencji, które samodzielnie – tylko na podstawie nagrań wideo – nauczą się przepisów ruchu drogowego czy zasad fizyki. GameGAN to pierwszy krok w tym kierunku, dodaje Sanja Fidler, dyrektor laboratorium NVIDII w Toronto.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarna żółć (gr. μελαινα χολή) to najbardziej tajemniczy humor w koncepcji zdrowia i choroby stworzonej przez Hippokratesa (V/IV w. p.n.e.), która, po rozwinięciu przez Klaudiusza Galena (II w. n.e.) i średniowiecznych, arabskich uczonych, pozostawała aktualna w dyskursie medycznym do końca XVIII w. Przez większość tego czasu zajmowała wiodące miejsce w wyobrażeniach na temat stanów patologicznych ludzkiego organizmu.
      Powyższe pojmowanie istoty chorób miało znaczący wpływ na rodzaj podejmowanych terapii i stosowanych leków. Powiązana z tym typologia temperamentów wprowadziła do obiegu obraz melancholii – choroby cechującej się długotrwałym smutkiem i pojęcie melancholika – osoby, która niejako z przyrodzenia, ze względu na przewagę czarnej żółci w organizmie, wykazuje tendencje do częstego i nadmiernego smutku. Połączenie koncepcji humoralnej z astrologią przyporządkowało melancholię wpływom Saturna. Zaowocowało to licznymi nawiązaniami w sztuce, czego przykładem jest choćby, powszechnie znany, miedzioryt Melancholia I z 1514 r., autorstwa Albrechta Dürera.
      Jatroastrologia nie wytrzymała próby czasu. Została poddana krytyce przez naukę doby oświecenia. W tym samym okresie, wskutek rozwoju medycyny klinicznej, zrezygnowano z koncepcji humoralnej. Oba wątki przetrwały jednak poza medycyną.
      Obecnie większość ludzi zna swój znak zodiaku oraz temperament, nierzadko tłumacząc w ten sposób swoje samopoczucie i postępowanie. Trafność humoralnej koncepcji temperamentów sprawia, że posługuje się nią współczesna psychologia. Co za tym idzie melancholia i melancholicy stanowią nadal element składowy otaczającego nas świata. W świetle dzisiejszych standardów psychologii i psychiatrii, dawny termin „melancholia” został utożsamiony z pojęciem depresji, która jest obecnie groźną chorobą cywilizacyjną.
      Czy można jednak postawić między nimi znak równości? Kwestia ta pozostaje nadal otwarta. Polski psychiatra i humanista, profesor Antoni Kępiński (1918-1972) postulował, by wrócić do stosowania dawnego terminu „melancholia”, który jego zdaniem, lepiej oddaje stan człowieka pogrążonego w długotrwałym i odbierającym chęć życia smutku. Obszerny i wielopłaszczyznowy temat melancholii pozostaje zagadnieniem niewyczerpanym przez naukę. Jego złożoność wymaga interdyscyplinarnego podejścia. Celem konferencji jest więc próba przedstawienia aktualnych badań prowadzonych w następujących obszarach badawczych:
      • Melancholia/depresja i melancholicy. Stan duszy i ciała.
      • Wpływ Saturna. Znaki zodiaku. Melancholia w astrologii.
      • Melancholia/depresja w kulturze (i popkulturze).
      • Motyw melancholii/depresji w sztuce i literaturze.
      • Melancholia i melancholicy w dawnym dyskursie medycznym.
      • Leczenie depresji we współczesnej psychiatrii i psychologii.
      • Społeczne i cywilizacyjne aspekty depresji.
      Na konferencję, która odbędzie się w Bydgoszczy w dniach 23–24 kwietnia 2020 r., zapraszają Zakład Historii Medycyny i Pielęgniarstwa, Studenckie Koło Naukowe Historii Medycyny i Farmacji Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy
      Uniwersytetu Mikołaja Kopernika, Studenckie Koło Historyków Uniwersytetu Kazimierza Wielkiego, Fundacja Naukowa Bydgoska Szkoła Historii Nauk Medycznych oraz Bydgoskie Towarzystwo Naukowe.
      Organizatorzy są też otwarci na referaty wykraczające poza opisane obszary badawcze, związane z tematem konferencji. Nie ograniczają zasięgu geograficznego, ani zakresu chronologicznego podejmowanych zagadnień. Do udziału w konferencji zapraszają wszystkich badaczy zainteresowanych jej tematyką, zaś w szczególności studentów i doktorantów oraz młodych (nawet tylko duchem) pracowników naukowych, reprezentujących kierunki związane z: medycyną, farmacją, psychologią, a także historią, historią sztuki, literaturoznawstwem, religioznawstwem, etnologią, antropologią kultury itp.
      Czas na wygłoszenie referatu wynosił będzie 20 minut.
      Zgłoszenia należy wysyłać, nie później niż do 25.03.2020 r., na adres: melancholia.depresja@wp.pl . Abstrakt powinien zawierać od 1000 do 1500 znaków ze spacjami.
      Organizatorzy zastrzegają sobie prawo do selekcji nadesłanych abstraktów. Lista osób zakwalifikowanych zostanie podana najpóźniej 1.04.2020 r.. Opłata konferencyjna wynosi 350 zł dla pracowników naukowych, 300 zł dla uczestników studiów doktoranckich oraz 200 zł dla studentów. Opłata obejmuje materiały konferencyjne, przerwy kawowe oraz opublikowanie wygłoszonego referatów w recenzowanej pracy zbiorowej. Do druku będą skierowane tylko te prace, które uzyskają pozytywną opinię recenzentów i redaktorów.
      Koszty noclegu oraz wyżywienia pozostają we własnym zakresie uczestników. Organizatorzy konferencji mogą pomóc w znalezieniu zakwaterowania.Wszelkie pytania prosimy kierować na adres mailowy melancholia.depresja@wp.pl.

      « powrót do artykułu
×
×
  • Create New...