Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Hayabusa2 opuściła asteroidę Ryugu i wraca na Ziemię

Rekomendowane odpowiedzi

Japońska sonda Hayabusa2 wraca na Ziemię. To ostatni etap 6-letniej misji, w ramach której sonda stała się pierwszym wysłanym przez człowieka pojazdem, który zebrał próbki spod powierzchni asteroidy.

Japońska agencja kosmiczna JAXA poinformowała, że dnia 13 listopada o godzinie 10:05 czasu japońskiego (2:05 czasu polskiego) Hayabusa2 delikatnie uruchomiła silniki i zaczęła oddalać się od asteroidy z prędkością mniejszą niż 10 cm/s. Za niecały miesiąc, 10 grudnia, sond uruchomi silniki jonowe i rozpocznie podróż w kierunku Ziemi. Ma tutaj dotrzeć pod koniec 2020 roku.

Hayabusa2 została wystrzelona w drugiej połowie 2014 roku, a na asteroidę Ryugu trafiła w czerwcu 2018 roku. To pierwsza misja, w ramach której lądowniki trafiły na powierzchnię asteroidy, pierwsza, która pobrała próbki z niewidocznej z Ziemi strony asteroidy oraz pierwsza, która pobrała próbki spod powierzchni.

Ryugu ma bardzo ciemny kolor, prawdopodobnie ze względu na wysoką zawartość węgla. Hayabusa2 odkryła, że asteroida ma niezwykle małą gęstość, sugeruje, że jest złożona z małych luźno połączonych skał. Jej powierzchnia jest bardziej kamienista niż wcześniej badanych asteroid. Dotychczasowe badania wskazują, że Ryugu powstała w wyniku kolizji dwóch większych obiektów.

Obecnie ludzkość bada też asterodię Bennu. Na jego orbicie od niemal roku znajduje się pojazd OSIRIS-REx. Jego zadaniem również jest pobranie próbek. Misja ma wylądować na Ziemi w 2023 roku.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
      Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
      Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
      W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
      Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
      Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
      Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
      Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
      Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
      Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
      Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
      W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
      Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
      Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
      Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
      Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
      NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
      Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
      W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
      Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
      Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
      Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
      Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
      Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
      Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
      Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
      Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
      Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
      Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...