Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Dopamina, serotonina, adrenalina... Od ich właściwych proporcji zależy płynne funkcjonowanie ludzkiego mózgu. Zaburzenia oznaczają choroby. Dlatego tak ważne jest, by umieć wykrywać takie zaburzenia jak najwcześniej. Zanim jeszcze pojawią się widoczne objawy. Można to będzie robić szybko, prosto i tanio, dzięki pracy zespołu pod kierunkiem prof. Martina Jönsson-Niedziółki z IChF PAN.

Dążymy do tego, żeby wykrywać neuroprzekaźniki w jak najniższych stężeniach i bez dodatkowego przygotowania próbki - opowiada autorka pracy opublikowanej w Analytical Chemistry, mgr Magdalena Kundys-Siedlecka. W pracy, którą właśnie opublikowaliśmy, udowodniłam, że w mysim serum (czyli krwi bez czerwonych krwinek) potrafię wykryć serotoninę w stężeniu tak niskim, jakie można znaleźć fizjologicznie.

Serotonina bywa nazywana hormonem szczęścia, zasadne wydało się zatem pytanie, czy chodziło o stężenie u myszy szczęśliwych czy nieszczęśliwych?

Wydaje mi się, że badane przez nas myszy były takie... zwyczajne – uśmiecha się szef pracowni, prof. Martin Jönsson-Niedziółka - ani szczęśliwe, ani nieszczęśliwe, a poziom serotoniny u nich statystycznie wyrównany.

A skąd w ogóle pomysł na taką metodę? Po pierwsze - chcieliśmy wykrywać wiele neuroprzekaźników równocześnie, w tej samej próbce - tłumaczy Magdalena Kundys. Po drugie – w niskich, fizjologicznych stężeniach, co pozwoliłoby wcześnie wykryć ewentualną chorobę. Po trzecie – w jak najmniej przetworzonej próbce: pobrać krew, ślinę, albo np. płyn mózgowo-rdzeniowy i bez dodatkowych przygotowań te neuroprzekaźniki tam ujawnić.

Mówi się np., że choroba Alzheimera jest wywoływana przez niedobór dopaminy w konkretnych rejonach mózgu, ale w rzeczywistości mechanizmy chorobowe są dużo bardziej skomplikowane. Zwykle nie decyduje nadmiar lub niedobór tylko jednego neuroprzekaźnika, lecz raczej niewłaściwa ich mieszanina. Jeśli uda się dowiedzieć, jakie są stężenia różnych związków w jednej próbce, pobranej w tym samym momencie, z tego samego miejsca, można o wiele precyzyjniej wypowiadać się o tym, co tak naprawdę jest przyczyną takich czy innych objawów chorobowych.

Jak naszym naukowcom udało się tego dokonać? Kluczem jest wirowanie próbki na elektrodzie. Dzięki temu wymuszany jest szybszy transport masy. Zwiększamy wielokrotnie wydajność reakcji i przyspieszamy pomiar - chwali się mgr Kundys-Siedlecka. Limit detekcji jest ekstremalnie niski. Jesteśmy przy tym w stanie wykryć wszystkie neuroprzekaźniki, które są elektrochemicznie aktywne, czyli podlegają procesom utleniania i redukcji. Ja pokazuję, jak jednocześnie oznaczać dwa z nich: dopaminę i serotoninę. Muszę dodać, że dopaminę identyfikujemy bez pudła, choć jest bardzo podobna do innych: adrenaliny, noradrenaliny i jeszcze paru katecholamin - uśmiecha się badaczka.

Można by porównać te działania do szukania trawy w trawie. Próbka jest wielką łąką, a my chcemy na niej znaleźć, powiedzmy, kłosownicę wśród turówki. I to się udaje! To możliwe tylko dzięki dobrze zmodyfikowanym elektrodom, które odseparowują sygnały od różnych neuroprzekaźników.

Oczywiście pomiar we krwi pozwala tylko na bardzo przybliżone określenie stężeń. Przecież wiadomo, że neuroprzekaźniki są wydzielane w różnych obszarach mózgu, a także poza mózgiem. Np. jeśli dany neuroprzekaźnik jest wydzielany w nerkach, to jego stężenie w moczu będzie inne niż we krwi czy łzach.

W kolejnym etapie badań chcielibyśmy sprawdzić, czy nasza metoda tak samo precyzyjnie wykrywa neuroprzekaźniki we krwi człowieka, jak robi to u myszy - opowiada badaczka. Jeśli to się potwierdzi, będzie można pobierać od pacjenta mniej krwi –wystarczy praktycznie kropla (70 mikrolitrów), by oznaczyć wiele takich substancji, a dążymy do tego, by wykrywać jeszcze niższe stężenia, co dawałoby możliwość oznaczania np. dopaminy w płynach innych niż krew, takich, które w ogóle nie bolą przy pobieraniu.

Serotoninę umiemy już wykrywać w stężeniach podobnych do ludzkich - precyzuje prof. Jönsson-Niedziółka. Z dopaminą – najciekawszym z neuroprzekaźników – jeszcze się nam nie udaje, a inne mają tak niskie stężenia, że potrzebujemy modyfikacji powierzchni elektrodowej, a zapewne i całej metody, żeby z dużym prawdopodobieństwem powiedzieć, że wykrywamy je w nieprzygotowanej próbce. Wiemy natomiast, że przy wyższych stężeniach umiemy już odseparować sygnały serotoniny i dopaminy w tej samej próbce.

Nasza metoda to dwie korzyści dla każdego szpitala, który zechce ją zastosować: po pierwsze, czas – w przypadku serotoniny to najszybsza znana metoda wykrywania, od pobrania do wyniku upływa mniej niż godzina; no, chyba że próbkę trzeba przewieźć” – precyzuje profesor. „Po drugie, koszt – metoda jest tania, a sprzęt może obsługiwać technik laborant po krótkim przeszkoleniu.

Wymagana jest głównie cierpliwość – uśmiecha się mgr Kundys-Siedlecka. Pozostaje czekać, aż efekty badań zespołu IChF PAN trafią pod szpitalne strzechy, pomogą poznać mechanizmy rozwoju takich chorób, jak depresja czy alzheimer i usprawnią ich leczenie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
14 godzin temu, 3grosze napisał:

Dopamina też jest hormonem szczęścia, ale w działaniu: jestem szczęśliwy(a), bo coś robię. Jest charakterystyczna dla działania w pasji.

Czyli poświęcając dużo czasu swoim pasjom zmniejszam ryzyko Parkinsona? Pytam jako laik. Byłoby super. :)

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 godzin temu, 3grosze napisał:

Dopamina też jest hormonem szczęścia, ale w działaniu: jestem szczęśliwy(a), bo coś robię. Jest charakterystyczna dla działania w pasji.

Co jest pierwsze? Podczas rąbania drewna przypadkowo wydzieliła mi się dopamina i  w ten sposób zyskałem nową pasję, czy jednak, podczas oddawania się ulubionej aktywności mózg wydziela dopaminę bo 'to co robisz jest dobre, rób to dalej' ?

Mógłbym dać dziecku jakieś zadanie z matmy a z boku, podstępnie podać dopaminę i w ten sposób uzyskać osobnika uzależnionego od matematyki. Rewolucja w oświacie. Gdyby udało się uzyskać takie skupienie, zdolność zapamiętywania jakie ludzie prezentują podczas gier komputerowych, to już bylibyśmy w osobliwości naukowej :D

Edytowane przez Jajcenty

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
18 godzin temu, 3grosze napisał:

A w tym mówieniu komuś nazwiska się nie pomerdały?:D

Niedobór dopaminy jest znamienny dla choroby Parkinsona!

Może to przez alzheimera Parkinson został wyrugowany :D Dla mnie dopamina też wiąże się zdecydowanie z chorobą Parkinsona, ale dla porządku spróbuję się dopytać u źródła (IChF).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 25.10.2019 o 10:13, Jajcenty napisał:

Mógłbym dać dziecku jakieś zadanie z matmy a z boku, podstępnie podać dopaminę i w ten sposób uzyskać osobnika uzależnionego od matematyki.

Działanie pod wpływem pasji, to nie uzależnienie. To trochę inny stan umysłu. Jednak niektóre substancje psychoaktywne, mogą stymulować nadmierne wydzielanie dopaminy i to faktycznie prowadzi do ciężkich uzależnień. Nie wiem jak to czytenie wyszło, późno już albo jak kto woli wcześnie. :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nagła śmierć łóżeczkowa to przypadek nagłego niewyjaśnionego zgonu zdrowego dziecka przed ukończeniem 12. miesiąca życia. Śmierć najczęściej następuje, gdy dziecko śpi. Do dzisiaj nauka nie znalazła przyczyny tego rzadko występującego zjawiska. Statystyki z różnych krajów pokazują, że zespół nagłej śmierci łóżeczkowej ma miejsce w od 80 do 200 przypadków na 100 000 żywych urodzeń rocznie i pomimo promowania różnych rozwiązań, jak np. bezpieczniejsze środowisko i pozycja snu, odsetek ten utrzymuje się na niezmienionym poziomie od dekad.
      Grupa amerykańskich naukowców zbadała tkanki przechowywane w Biurze Lekarza Sądowego San Diego związane z przypadkami śmierci niemowląt w latach 2004–2011. Uczeni przeanalizowali tkankę pnia mózgu 70 zmarłych niemowląt, poszukując w niej nieprawidłowości.
      Okazało się, że u tych dzieci, które zmarły z powodu nagłej śmierci łóżeczkowej, występuje zmieniony receptor serotoniny 5-HT2A/C. Wcześniejsze badania na gryzoniach wykazały, że receptor ten odpowiada za wybudzenie ze snu i automatyczne podjęcie czynności oddechowych, chroniąc w ten sposób mózg przed niedoborami tlenu w czasie snu. Może to wskazywać, że to nieprawidłowość biologiczna stoi za przypadkami nagłej śmierci łóżeczkowej.
      Zdaniem badaczy, do zgonu może dochodzić, gdy jednocześnie zachodzą trzy czynniki: 1. dziecko ma nieprawidłową budowę receptora, który czyni je podatnym na zaburzenia oddychania w czasie snu; 2. dziecko znajduje się w krytycznym momencie rozwoju układu oddechowego i krążeniowego w pierwszym roku życia; i 3. doświadcza zewnętrznego czynnika stresowego, jak np. spanie z twarzą skierowaną w dół lub spanie z kimś w łóżku.
      Pomimo tego, że u dzieci, które zmarły na zespół nagłej śmierci łóżeczkowej odkryliśmy nieprawidłową budowę receptora serotoniny 2A/C, nie znamy związku pomiędzy tą nieprawidłowością a przyczyną zgonu, podkreślają naukowcy. A główny autor badań, Robin Haynes, dodaje, że pozostało jeszcze wiele do zrobienia, zanim zrozumiemy konsekwencje nieprawidłowości budowy tego receptora w kontekście większej sieci receptorów serotoninowych i innych oraz ich roli w ochronie funkcji krążeniowych i oddechowych. Obecnie nie istnieją metody identyfikowania dzieci z nieprawidłowościami w układzie serotoninergicznym. Zatem kluczowym elementem ochrony niemowląt jest w tym przypadku bezpieczne środowisko snu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców wykazał, że neurony, w których zachodzi ekspresja receptora dopaminowego D2 (D2R), wykazują w zależności od lokalizacji w prążkowiu różne cechy molekularne i funkcje. Badania na modelu mysim otwierają drogę do opracowania lepszych metod terapii chorób, w przypadku których poziom dopaminy jest zmieniony, np. schizofrenii czy choroby Parkinsona.
      Prążkowie (łac. striatum) to obszar mózgu zaangażowany m.in. w kontrolę motoryczną, tworzenie nawyków, podejmowanie decyzji, motywację czy wzmocnienie. Jego dysfunkcje powiązano z różnymi zaburzeniami neurologicznymi i psychiatrycznymi. Jednym z najważniejszych neuroprzekaźników w prążkowiu jest dopamina; jej działanie zależy od rodzaju receptora, z którym się zwiąże.
      Badanie, którego wyniki ukazały się w piśmie Nature Communications, koncentrowało się na receptorach dopaminowych D2. Akademicy wykazali, że wbrew oczekiwaniom, nie wszystkie neurony z ekspresją D2 w prążkowiu mają tę samą tożsamość molekularną czy funkcję. Kluczem jest ich lokalizacja neuroanatomiczna.
      Zespół zidentyfikował setki nowych regionospecyficznych markerów molekularnych, które można będzie wykorzystać do celowania w pewne subpopulacje.
      Uzyskane rezultaty pokazują, że istnieje znacząca molekularna i funkcjonalna heterogeniczność populacji neuronalnych prążkowia. Jeśli je lepiej poznamy, może nam się udać osiągnąć lepszą wybiórczość podczas projektowania terapii na choroby, w przypadku których poziom dopaminy jest zmieniony - podkreśla Emma Puighermanal-Puigvert z Instytutu Neuronauk Uniwersytetu Autonomicznego w Barcelonie.
      Naukowcy sprawdzali, jakie geny ulegają ekspresji w neuronach z D2R występujących w dwóch regionach prążkowia: 1) prążkowiu brzusznym (ventral striatum), składającym się głównie z jądra półleżącego i 2) grzbietowym. Stwierdzono spore różnice. W zależności od lokalizacji, ekspresji ulegają inne białka, co zmienia cechy i funkcje neuronów.
      W ramach studium naukowcy skupili się na zlokalizowanych głównie w jądrze półleżącym neuronach, w których zachodzi ekspresja białka WFS1. Analizowano wpływ delecji ich D2R. Okazało się, że myszy po knock-oucie znacznie mniej kopały; jest to wrodzone zachowanie, przejawiane przez wiele gatunków podczas poszukiwania i gromadzenia pokarmu czy chowania się przed drapieżnikami. Dodatkowo stwierdzono, że takie zwierzęta wykazywały silniejszą reakcję hiperlokomotoryczną, gdy poziom dopaminy wzrastał po podaniu amfetaminy. Wg ekipy, to sugeruje, że receptory D2 z neuronów WFS1 pełnią kluczową rolę w odpowiedzi na psychostymulanty.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ustalono, co dzieje się w mózgu w sytuacji dania za wygraną/poddania. Chwilę wcześniej bardzo aktywne stają się neurony nocyceptynowe/orfaninowe (N/OFQ). N/OFQ hamuje zaś dopaminę, czyli neuroprzekaźnik związany z motywacją.
      Neurony N/OFQ są zlokalizowane w pobliżu obszaru mózgu zwanego polem brzusznym nakrywki (ang. ventral tegmental area, VTA). W VTA znajdują się neurony, które podczas przyjemnych aktywności uwalniają dopaminę.
      Naukowcy z Uniwersytetu Waszyngtońskiego poświęcili 4 lata na badanie roli nocyceptyny/orfaniny w regulacji motywacji.
      Ważnym odkryciem jest to, że oddziałując na VTA, duże, złożone neuroprzekaźniki, neuropeptydy, silnie wpływają na zachowanie zwierząt - podkreśla Christian Pedersen.
      Autorzy artykułu z pisma Cell dodają, że odkrycie może pomóc w stworzeniu terapii motywacyjnej dla chorych z depresją czy metod obniżania motywacji do określonych działań u osób z uzależnieniami.
      Amerykanie prowadzili eksperymenty na myszach. By uzyskać sacharozę, zwierzęta musiały szturchać port pyskiem. Najpierw wystarczył raz, potem trzeba było stukać dwa, pięć razy itp. Ostatecznie wszystkie gryzonie się poddały. Zapis aktywności neuronów pokazał, że neurony frustracji stawały się najbardziej aktywne, gdy myszy przestawały poszukiwać sacharozy.
      U ssaków obwody neuronalne odpowiedzialne za poszukiwanie nagrody są regulowane przez mechanizmy homeostazy. Dzikie zwierzęta są słabiej motywowane do poszukiwania nagrody w środowiskach ubogich w zasoby. Uporczywe poszukiwanie nagrody może być bowiem niekorzystne ze względu na narażanie się na ataki drapieżników czy wydatkowanie energii.
      U ludzi deficyty tych procesów regulacyjnych mogą się manifestować jako dysfunkcje behawioralne, np. depresja, uzależnienie czy zaburzenia odżywiania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na jednym z amerykańskich uniwersytetów powstał test do wykrywania biomarkerów stresu (hormonów i neuroprzekaźników) w różnych płynach ustrojowych: pocie, krwi, moczu czy ślinie.
      Zależało nam na czymś prostym i łatwym do zinterpretowania - opowiada prof. Andrew Stecki z Uniwersytetu Cincinnati (UC). Takie rozwiązanie może nie zapewni wielu danych, ale pokaże, czy powinno się poszukać pomocy specjalisty.
      Naukowcy z UC uzyskali urządzenie, które do mierzenia poziomu biomarkerów stresu wykorzystuje ultrafiolet, a konkretnie spektroskopię UV; w ramach testów mierzono absorpcję promieniowania z zakresu 190–400 nm. Określa ono poziom wielu biomarkerów [kortyzolu, serotoniny, dopaminy, noradrenaliny i neuropeptydu Y]. Może być stosowane do różnych płynów ustrojowych. To naprawdę unikatowe.
      Stecki wyjaśnia, że dużą rolę w jego badaniach odegrały osobiste doświadczenia z chorym ojcem. By dostosować podawanie leków, musiałem go często zabierać do laboratorium lub do lekarza. Myślałem, że byłoby świetnie, gdyby mógł sobie zrobić testy samodzielnie i sprawdzić, czy rzeczywiście coś się dzieje, czy tylko tak mu się wydaje. To nie zastępuje testów laboratoryjnych, ale daje pacjentom pojęcie o sytuacji.
      Naukowcom z UC przyznano dofinansowanie z Narodowej Fundacji Nauki i Air Force Research Lab. Podczas misji na pilotów wojskowych działa silny stres. Kontroler lotu powinien wiedzieć, kiedy pilot dochodzi do kresu swoich możliwości, by móc go wycofać, nim dojdzie do katastrofy.
      Amerykanie wspominają też o innych komercyjnych zastosowaniach. Stres szkodzi podstępnie nam wszystkim. [...] Wiele fizycznych chorób, np. cukrzycę, nadciśnienie czy problemy neurologiczne [...], przypisuje się właśnie stresowi - dodaje doktorantka Prajokta Ray.
      Autorzy publikacji z ACS Sensors opisują swoje rozwiązanie jako mikroprzepływowe urządzenie analityczne na polimerowym substracie. Całości dopełnia dioda emitująca UV.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ostatnio sporą popularnością cieszą się wysokobiałkowe, a zarazem niskowęglowodanowe diety. Wg naukowców, najwyższy czas, by dobrze przyjrzeć się ich potencjalnym skutkom ubocznym. Ostatnio na ich celowniku znalazły się więc rozgałęzione aminokwasy (ang. branched-chain amino acids, BCAAs). Pomagają one zbudować masę mięśniową, ale jak się okazuje, mogą też negatywnie wpływać na nastrój i prowadzić do tycia.
      Choć wykazano, że dieta wysokobiałkowa, a zarazem niskowęglowodanowa jest korzystna z reprodukcyjnego punktu widzenia, ma ona niekorzystny wpływ na zdrowie w wieku średnim. Prowadzi także do skrócenia długości życia. Nowe badania pokazały, że istotna jest równowaga aminokwasów - by mieć pewność, że się ją osiąga, dobrze jest różnicować źródła białka - opowiada dr Samantha Solon-Biet z Uniwersytetu w Sydney.
      Australijczycy badali wpływ BCAAs i innych aminokwasów niezbędnych (egzogennych), np. tryptofanu, na stan zdrowia i skład ciała myszy.
      Suplementacja rozgałęzionymi aminokwasami skutkowała wyższym poziomem BCAAs we krwi i konkurencją z tryptofanem o przetransportowanie do mózgu. [Co istotne] tryptofan jest jedynym prekursorem neuroprzekaźnika serotoniny. Ze względu na swe działanie - poprawianie nastroju i sprzyjanie snowi - bywa ona nazywana hormonem szczęścia. Pełni jednak znacznie więcej funkcji i na tym właśnie polega [aminokwasowy] problem - wyjaśnia prof. Stephen Simpson.
      "Wywołany nadmiarem rozgałęzionych aminokwasów spadek poziomu serotoniny w mózgu prowadził u naszych myszy do ogromnego przejadania się. Skutkowało to potężną otyłością i skróceniem długości życia".
      Podczas eksperymentów myszy podzielono na 4 grupy. Jednej przez całe życie podawano podwójną ilość (200%) BCAAs, drugiej standardową ich ilość (100%), trzeciej połowę (50%), a czwartej zaledwie 1/5 (20%). U gryzoni z 1. grupy wzrosło spożycie pokarmów, co prowadziło do otyłości i skrócenia życia.
      Dietetyk dr Rosilene Robero zaleca, by różnicować źródła białka, tak by zapewnić sobie pełen wachlarz niezbędnych aminokwasów.
      Źródłami BCAAs są czerwone mięso i nabiał, ale także ryby, kurczaki i jaja. Wegetarianie znajdą je w soi oraz innych roślinach strączkowych czy w orzechach.
      Sporo tryptofanu występuje w serze, kurczaku, indyku, soi i orzechach.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...