Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Niektóre czarne dziury mogą nie być czarnymi dziurami? Równania Friedmanna a GEODE

Rekomendowane odpowiedzi

Jeśli to, co uznawaliśmy za czarne dziury jest w rzeczywistości obiektami nieposiadającymi osobliwości, wówczas przyspieszające rozszerzanie wszechświata jest naturalną konsekwencją Einsteinowskiej ogólnej teorii względności, mówi Kevin Croker z Uniwersytetu Hawajskiego. Croker i jego kolega opublikowali na łamach Astrophysical Journal artykuł, w którym stwierdzają, że niektóre obiekty uznawane obecnie za czarne dziury, mogą nie być czarnymi dziurami, ale obiektami pełnymi ciemnej energii.

Kevin Croker i emerytowany profesor matematyki Joel Weiner nie zajmowali się badaniem czarnych dziur. Przyglądali się równaniom Friedmanna, które zostały przez ich twórcę wywiedzione z teorii Einsteina. Fizycy wykorzystują te równania do opisu rozszerzania się wszechświata, gdyż za ich pomocą łatwiej jest prowadzić obliczenia. Naukowcy zauważyli, że aby poprawnie zapisać równania Friedmanna, ultragęste izolowane obiekty we wszechświecie, takie jak gwiazdy neutronowe czy czarne dziury muszą być – z matematycznego punktu widzenia – traktowane jak cała reszta. Dotychczas kosmolodzy uważali, że w obliczeniach należy pomijać szczegóły dotyczące tych obiektów.

Wykazaliśmy, że istnieje tylko jeden prawidłowy sposób na tworzenie tych równań. A jeśli zrobi się to w ten sposób, można dojść do bardzo interesujących wniosków, mówi Croker.

Z obliczeń wynika, że cała ciemna energia, potrzebna do przyspieszania rozszerzania się wszechświata, może znajdować się w obiektach uznawanych obecnie za czarne dziury. Co więcej wykazali, że te alternatywy dla czarnych dziur – nazwane Generycznymi Obiektami Ciemnej Energii (GEODE – Generic Objects of Dark Energy) – pozwalają również wyjaśnić pewne cechy fal grawitacyjnych.

Wyliczenia, dokonane przez Crokera i Weinera wykazały, że GEODE, ultragęste obiekty pełne ciemnej energii, ale niezawierające osobliwości, zyskują masę wyłącznie przez to, że wszechświat się rozszerza. Ich masa zwiększa się, nawet gdy w pobliżu nie ma materii, którą mogłyby wchłonąć. Tak, jak światło podróżujące przez rozszerzający się wszechświat traci energię, co widzimy w postaci przesunięcia w podczerwieni, tak i materia traci masę w miarę rozszerzania się wszechświata. Zwykle efekt ten jest zbyt słaby, by go zauważyć. Jednak w ultragęstych środowiskach, wewnątrz których panuje niezwykle wysokie ćiśnienie, mamy do czynienia z materiałem relatywistycznym, a tam efekt utraty masy przez materię jest zauważalny. Ciemna materia jest relatywistyczna i panujące wewnątrz niej ciśnienie działa inaczej niż na materię czy światło. Zatem obiekty zbudowane z ciemnej energii, jak GEODE, z czasem zyskują masę.

Hipoteza dotycząca GEODE pojawiła się w latach 60. ubiegłego wieku, ale dopiero ostatnio opracowano metody matematyczne, pozwalające badać te obiekty. Dzięki pracy Crokera i Weinera wydaja się, że za ich pomocą w prosty sposób można wyjaśnić pewne zjawiska zaobserwowane podczas rejestracji fal grawitacyjnych pochodzących z połączenia dwóch czarnych dziur. Gdy LIGO po raz pierwszy wykrył fale grawitacyjne wyliczono, że pochodzą one z połączenia czarnych dziur o masach 29 i 36 mas Słońca. Tymczasem naukowcy spodziewali się innych mas.

Jednak GEODE, w przeciwieństwie do czarnych dziur, zyskują z czasem masę. Uformowane w młodym wszechświecie GEODE mogły z czasem zyskać na masie i to właśnie one mogły się zderzyć, co zostało zaobserwowane przez LIGO. Wyjaśnienie takie jest znacznie prostsze niż przyjęcie, że mieliśmy do czynienia z czarnymi dziurami o takich, a nie innych masach.

Nie wszyscy są przekonani do twierdzeń Crokera i Weinera. Profesor fizyki Vitor Cardoso z Instituto Superior Tecnico w Lizbonie mówi, że zaprezentowany opis GEODE jest sprzeczny z intuicją i trudny do przyjęcia. Dodaje przy tym: podoba mi się pomysł znalezienia alternatyw dla czarnych dziur. To zmusi nas to wzmocnienia teorii opisującej czarne dziury. Poza tym, jeśli nie będziemy takiej alternatywy szukali, to nigdy jej nie znajdziemy.

Badania opisano w artykule Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 godzin temu, KopalniaWiedzy.pl napisał:

Jednak GEODE, w przeciwieństwie do czarnych dziur, zyskują z czasem masę

Hm, czyli od pewnego momentu (po maturze?) nie martwimy prawami zachowania masy, energii, pędu?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Jajcenty napisał:

Hm, czyli od pewnego momentu (po maturze?) nie martwimy prawami zachowania masy, energii, pędu?

Moim zdaniem, to jest zła interpretacja. Martwimy się, ale uwzględniamy także przestrzeń, której wpływ był do tej pory pomijany. Tymczasem przestrzeń też czymś jest. Hawking udowadniał, że przestrzeń to ujemna energia. Dotychczasowe pomijanie jej zmian w czasie w obecnych równaniach, pewnie było błędem. Aczkolwiek w normalnych warunkach (takich jak na Ziemi) ten wpływ może być znikomy, dlatego nikt go nie zauważył w eksperymentach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
10 godzin temu, Sławko napisał:

Aczkolwiek w normalnych warunkach (takich jak na Ziemi) ten wpływ może być znikomy, dlatego nikt go nie zauważył w eksperymentach.

No to ile trzeba tej przestrzeni, żeby zrobić artefakt ciężki jak BH? A jednocześnie wielkie, z naszego punktu widzenia, obszary przestrzeni wnoszą tak niewiele, że nie zauważamy tego w eksperymentach i trzeba spekulować zamiast zmierzyć.

5 godzin temu, Astro napisał:

A: To zależy co rozumiesz przez "energię" i co rozumiesz przez "zachowuje".

Zdolność wykonania pracy choć w połączeniu z entropią nie jestem już taki pewny czy to dobra definicja :)

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
26 minut temu, Jajcenty napisał:

No to ile trzeba tej przestrzeni[...]

Nie wiem. Policz sobie, jeśli cię to interesuje. Może Kevin Croker podpowie ci jak to policzyć.

Grawitacja też jest oddziaływaniem słabym, a jednak w pewnych warunkach może uwięzić światło.

Edytowane przez Sławko

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
19 godzin temu, Jajcenty napisał:

Hm, czyli od pewnego momentu (po maturze?) nie martwimy prawami zachowania masy, energii, pędu?

W tym przypadku może raczej "kosztem czego" - z tekstu by wynikało, że rozpirzania całej reszty Wszechświata.

Ale... abstranotego od konkretu, bo oryginalny artykuł długaśny,. cholernie robaczywy i raczej czysto teoretyczny tylko, chociaż czort wie, no i przeżuwać go przez miesiąc mi się nie chce.
Prawa zachowania = symetrie (Noether). Zakładając poprawność tego równania, dostajemy pytanie o symetrię, która lub której złamanie umożliwiło (umożliwia) istnienie tego całego diabelstwa dookoła (i w środku też):
- czy jest ona ukryta -> w uproszczeniu "suma wszystkiego = 0"
- czy może "to wszystko" jest skutkiem złamania jakiejś symetrii absolutnej, zawierającej w sobie wszystkie możliwe (i niemożliwe też).
Zresztą jedno nie wyklucza drugiego. A symetria absolutna (nieskończona) pewnie powinna nie tylko pozwalać na dowolne jej łamanie, ale nawet takie łamanie swoją nieskończonością wymuszać.

No dobra, to tyle, bo mi się już całkiem ponotego pod kopułą ;)
 

5 godzin temu, Jajcenty napisał:

Zdolność wykonania pracy

A co to jest "praca"?

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, ex nihilo napisał:

A co to jest "praca"?

Miara energii jaką układ może wymienić zmieniając swój stan. I w ten sposób zrobiliśmy kółko.Wiem, większość pojęć fizycznych smakowana, 'roztarta na języku' traci sens. 

3 godziny temu, ex nihilo napisał:

W tym przypadku może raczej "kosztem czego" - z tekstu by wynikało, że rozpirzania całej reszty Wszechświata.

Manifestacja reguły przekory? :D Wszechświat się robi coraz rzadszy więc coś się staje cięższe żeby nadrobić gęstość.

9 godzin temu, Sławko napisał:

Nie wiem. Policz sobie, jeśli cię to interesuje. Może Kevin Croker podpowie ci jak to policzyć.

Zajrzałem do źródła, ale te robaki wymagają trochę czasu. Tak się zastanawiam, jeśli to wyżera przestrzeń, to powinniśmy obserwować jakieś przesunięcia do nadfioletu, a minimum to mniejszy red shift niż by to wynikało z odległości.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
18 godzin temu, Astro napisał:

Nie łapię; dlaczego? Przy okazji: przestrzeń średnio to praktycznie pusta przestrzeń

Kwestia uzyskiwania masy kosztem roszerzającego się Wszechświata - jeśli to jakoś spowalnia lub wręcz 'cofa' puchnięcie przestrzeni powinniśmy widzieć to na wykresach przesunięcia do czerwieni?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 3.10.2019 o 01:58, KopalniaWiedzy.pl napisał:

Ich masa zwiększa się, nawet gdy w pobliżu nie ma materii, którą mogłyby wchłonąć

Dopóki CD ma temperaturę mniejszą niż mikrofalowe promieniowanie tła to będzie więcej chłonąć niż oddawać. Niezależnie od tego czy ma te nowe hipotetyczne właściwości czy nie.

W dniu 3.10.2019 o 01:58, KopalniaWiedzy.pl napisał:

Z obliczeń wynika, że cała ciemna energia, potrzebna do przyspieszania rozszerzania się wszechświata, może znajdować się w obiektach uznawanych obecnie za czarne dziury

Zawiedzeni będą ci którzy w energii próżni upatrywali ciemnej energii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
17 godzin temu, thikim napisał:

Dopóki CD ma temperaturę mniejszą niż mikrofalowe promieniowanie tła to będzie więcej chłonąć niż oddawać. Niezależnie od tego czy ma te nowe hipotetyczne właściwości czy nie.

Sugerujesz że chodzi o równowagę termiczną? A co z promieniowaniem Hawkinga? Gdzieś niedawno widziałem oszacowanie, że mała CD ok 1 kg znika spektakularnie w ułamku ułamka sekundy (1.0e-27) zostawiając po sobie jakieś megatony energii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 1878 roku pewien utalentowany muzycznie student fizyki z Uniwersytetu Monachijskiego zapytał swojego wykładowcę, szanowanego profesora von Jolly, czy dobrze wybrał kierunek studiów. Ten odpowiedział mu, że lepiej by zrobił, gdyby studiował muzykę, gdyż fizyka jest niemal w pełni rozwiniętą dziedziną nauki i nie pozostało w niej praktycznie nic do odkrycia. Student nazywał się Max Planck i 20 lat później położył podwaliny pod mechanikę kwantową.
      Obecni wykładowcy fizyki z pewnością nie ośmieliliby się powiedzieć studentom, by zajęli się czymś innym. Na pewno zaś nie w kontekście „końca fizyki”. Mogliby raczej powtórzyć za Sokratesem „wiem, że nic nie wiem”. I właśnie o tym traktuje „Ciemna materia i ciemna energia. Tajemnicze 95% wszechświata” Briana Clegga.
      Autor zaczyna od koncepcji zaproponowanej przez Arystotelesa i błyskawiczne przeskakuje do początku XX wieku. Nie jest to bowiem książka o historii rozwoju ludzkiej wiedzy na temat wszechświata, a o dziejach naszej niewiedzy. O tym, skąd się wzięła ciemna materia i ciemna energia oraz jak te koncepcje się rozwijały. To niezwykle wciągająca opowieść o naukowcach, ich pracy, odkryciach i sporach. O tym co wiedzą, a co im się wydaje, że wiedzą. A także o tym, jakie psikusy potrafią sprawić gwiazdy, galaktyki, pył międzygalaktyczny i większe struktury w kosmosie. Na jej łamach spotkamy najwybitniejsze nazwiska fizyki – wspomnianego już Plancka, Zwicky'ego, Hoyle'a, Einsteina, Hubble'a i innych. Dowiemy się, jak pracowali, co badali i jak budowali nasze obecne wyobrażenie o wszechświecie.
      Clegg potrafi wciągnąć czytelnika w opowieść. Dzięki niemu możemy lepiej zrozumieć nie tylko koncepcje ciemnej materii i ciemnej energii, ale też dowiedzieć się, jak niezwykle skomplikowane problemy stoją przed kosmologią i czemu służą niesamowite instrumenty badawcze, których nigdy zbyt wiele.
      I gdy już czytelnikowi wydaje się, że zaczął rozumieć, gdy rwie się, by dowiedzieć się jeszcze więcej o ciemnej materii i ciemnej energii, Clegg – niczym obuchem – wali go w głowę MOND-em. Bo... może ciemna materia i energia nie istnieją? Sprawdźcie zresztą sami.
      Książka „Ciemna materia i ciemna energia. Tajemnicze 95% wszechświata” Briana Clegga miała wczoraj premierę. Wydał ją Helion, a my zostaliśmy jej patronem medialnym. Teraz możecie ją kupić z 20-procentowym rabatem.
    • przez KopalniaWiedzy.pl
      Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
      Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
      To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
      Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
      Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
      Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
      Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
      Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
      Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
      Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
      O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
      To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
      Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
      Dotychczas sądzono, że czarnej dziurze  V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
      Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
      Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
      Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
      Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
      Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
      Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
      Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
      Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
      Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
      Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
      Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
      Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
      Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
      A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...