Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Znaleziono czaszkę jednego z najważniejszych przodków człowieka

Rekomendowane odpowiedzi

Naukowcom w końcu udało się odnaleźć częściowo zachowaną czaszkę jednego z naszych najważniejszych przodków. Odkrycie rzuca światła na kluczowy etap ewolucji człowieka.

W 2016 roku Yohannes Haile-Selassie z Cleveland Museum of Natural History w Ohio i jego koledzy prowadzili wykopaliska na stanowisku Woranso-Mille w Etiopii. Pewnego dnia podszedł do nich Ali Bereino, jeden z okolicznych mieszkańców, i pokazał naukowcowi kość szczękową. On nie był wówczas nawet przeze mnie zatrudniony, mówi Haile Selassie.

Uczony poszedł z Bereino na miejsce znaleziska. Trzy metry dalej leżała reszta głowy, stwierdza. Jego zespół zaczął bardzo dokładnie przeszukiwać teren. Praca nie należała do przyjemnych, gdyż miejsce było pokryte półmetrową warstwą świeżych kozich odchodów. Poświęcenie się jednak opłaciło. Znaleziono bowiem wiele ważnych kości, w tym np. lewą kość jarzmową.
Czaszka prawdopodobnie należała do mężczyzny, a biorąc pod uwagę stopień zużycia zębów, do sędziwego mężczyzny. Na podstawie warstwy, w której ją znaleziono, uczeni stwierdzili, że mężczyzna żył 3,8 miliona lat temu.

Teraz zidentyfikowano czaszkę jako należącą do Australopithecus anamensis.

Australopitek stanowił główną grupę homininów zamieszkujących Afrykę w okresie pomiędzy 4 a 2 milionami lat temu. Australopitek przemieszczał się na dwóch nogach, ale jego mózg był mniejszy od naszego. Do tego rodzaju należało wiele gatunków, w tym Australopithecus afarensis, którego przedstawicielka była słynna Lucy.

Odkrycie czaszki A. anamensis jest niezwykle istotne, gdyż jest to najstarszy znany gatunek australopiteka. Po raz pierwszy został on opisany w 1995 roku. Już wcześniej wiedzieliśmy dość dużo o anamensis. Jednak nie dysponowaliśmy jego czaszką, mówi Stephanie Melillo z Instytutu Antropologii Ewolucyjnej im. Maksa Plancka w Lipsku.

Odnalezienie czaszki być może zmusi naukę do zweryfikowania poglądów dotyczących ewolucji. Większość antropologów uważa, że A. anamensis jest przodkiem A. afarensis. Jest bowiem nieco starszy i bardziej podobny do małp. Jednak Melillo i jej zespół zaczęli kwestionować drogę ewolucji, jaką przyjęto we współczesnej nauce.

Wielu uczonych twierdzi, że A. afarensis powstał w wyniku anagenezy A. anamensis. Anageneza to taka zmiana całej populacji, że pojawiają się w niej tak istotne cechy, iż należy tę populację uznać za nowy gatunek, a populację wyjściową za gatunek wymarły. Anageneza A. anamensis w A. afarensis byłaby jednym z najniezwyklejszych przypadków anagenezy, jakie zachowały się w skamieniałościach, stwierdza Melillo.

Naukowcy z Lipska porównali nowo znalezioną czaszkę A. anamensis z czaszkami innych homininów, goryli oraz szympansów. Na tej podstawie stwierdzili, że znaleziona przed ponad 30 laty częściowa kość czołowa, która liczy sobie 3,9 miliona lat, należy do A. afarensis. Jako, że jest ona starsza niż znaleziona obecnie czaszka A. anamensis, nie mogło dojść do anagenezy, gdyż gatunek starszy nie może powstać z młodszego. Zespół Melillo uważa, że doszło do podziału linii ewolucyjnych wśród A. anamensis. Część gatunku dała początek A. afarensis, a część istniała jeszcze przez co najmniej 100 000 lat.

Nie wszyscy jednak zgadzają się z taką hipotezą. Bardzo trudno jest na podstawie fragmentu kości jednoznacznie stwierdzić, że należy on do afarensis, a nie do anamensis, mów zwolennik anagenezy, William Kimbel z Arizona State University. Posiadamy bowiem obecnie jedną czaszką A. anamensis, więc nie wiemy, na ile zróżnicowany był wygląd tego gatunku. Jak podkreśla Kimbel, nie oznacza to, że Melillo się myli. Potrzebujemy po prostu więcej skamieniałości do porównań.

Odnalezienie czaszki A. anamensis wzmacnia też argumenty tej części naukowców, którzy twierdzą, że niektóre bardzo stare skamieniałości należą do homininów, a nie do wymarłym linii ewolucyjnych małp. Chodzi tutaj m.in. o Ardipithecus ramidus sprzed 4,4 miliona lat czy Sahelanthropus tchadensis sprzed 6 milionów lat. Widzimy pewne podobieństwa pomiędzy nowo znalezioną czaszką a na przykład czaszką Sahelanthropusa czy też między zębami nowo znalezionej czaszki, a zębami ardipiteka, stwierdza Melillo.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie wyróżniamy kości policzkowej, szczególnie w polskim nazewnictwie. Rzeczywiście, w oryginalnym artykule użyto określenia "cheekbone", jednak nawet w literaturze anglosaskiej zawsze używa się poprawnie nazwy kość jarzmowa, czyli os zygomaticum/zygomatic bone. To kość jarzmowa tworzy kształt twarzy, zwany przez nas policzkiem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Człowiek współczesny pochodzi nie od jednej, a co najmniej od 2 populacji przodków, których linie ewolucyjne najpierw się rozeszły, a następnie połączyły. Naukowcy z University of Cambridge znaleźli dowody genetyczne wskazujące, że współczesny H. sapiens pochodzi z połączeniu dwóch dawnych populacji, które miały wspólnego przodka, 1,5 miliona lat temu doszło do ich rozdzielenia się, a 300 000 tysięcy lat temu do połączenia. Od jednej z tych linii ewolucyjnych dziedziczymy ok. 80% genów, a od drugiej otrzymaliśmy 20 procent.
      Przez ostatnie dziesięciolecia uważano, że H. sapiens powstał w Afryce około 200–300 tysięcy lat temu i pochodził z jednej linii przodków. Jednak badania, opublikowane na łamach Nature Genetics, przeczą temu poglądowi. Nasze badania pokazują, że ewolucja człowieka jest bardziej złożona, zaangażowane w nią były różne grupy, które przez ponad milion lat rozwijały się osobno, a później połączyły, dając początek człowiekowi współczesnemu, mówi profesor Richard Durbin.
      Autorzy skupili się na przeanalizowaniu całego genomu współcześnie żyjących ludzi i właśnie w nim zauważyli obecność dwóch populacji naszych przodków. Genom, który poddano analizie pochodził z 1000 Genomes Project, w ramach którego sekwencjonowano DNA różnych populacji żyjących obecnie w Azji, Afryce, Europie i obu Amerykach. Naukowcy stworzyli model komputerowy – cobraa – który pokazywał, w jaki sposób różne populacje łączyły się i dzieliły w trakcie ewolucji naszego gatunku. W ten sposób odkryli dwie populacje macierzyste, które dały nam początek. Analiza ujawniła też zmiany, jakie zachodziły przez ostatnich 1,5 miliona lat.
      Zaraz po tym, jak obie populacje naszych przodków się rozdzieliły, w jednej z nich pojawił się silny efekt wąskiego gardła, co sugeruje duży spadek liczebności. Populacja ta była bardzo niewielka i przez kolejny milion lat powoli się rozrastała. Ale to właśnie ona dostarczyła około 80% materiału genetycznego współczesnego człowieka. I wydaje się, że to od niej pochodzą neandertalczycy i denisowianie, mówi profesor Aylwyn Scally.
      Badania pokazały też, że geny odziedziczone po drugiej z populacji często poddawane były selekcji negatywnej, podczas której usuwane są szkodliwe mutacje. Mimo to, geny tej populacji, która w mniejszym stopniu buduje nasze DNA, szczególnie geny związane z funkcjonowaniem mózgu i układu nerwowego, mogły odegrać kluczową rolę w naszej ewolucji, wyjaśnia główny autor badań, doktor Trevor Cousins.
      Kim mogli więc być nasi przodkowie? Skamieniałości wskazują, że takie gatunki jak H. erectus i H. heidelbergensis żyły w tym czasie w Afryce i innych regionach. Być może to one dały nam początek? Jednak by to stwierdzić, potrzeba będzie jeszcze wielu badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyjątkowa baza 2400 stanowisk archeologicznych obejmujących dzieje człowieka od 3 milionów lat temu do 20 000 lat temu obejmuje ponad 100 starych kultur i opisuje wyniki 150 lat prac archeologicznych. Jest ona dziełem naukowców z centrum badawczego ROCEEH (The Role of Culture in Early Expansions of Humans), którzy skompilowali olbrzymią liczbę informacji i umieścili je w jednej ogólnodostępnej bazie danych.
      ROAD (ROCEEH Out of Africa Database) to jeden z największych zbiorów danych dotyczących archeologii, antropologii, paleontologii i botaniki, wyjaśnia doktor Andrew Kandel z Uniwersytetu w Tybindze. W sposób jednorodny pod względem geograficznym i chronologicznym połączono informacje o zabytkach kultury, szczątkach człowieka i jego przodkach, pozostałościach zwierząt i roślin. W ten sposób powstało narzędzie, które pomaga w analizie wielu różnych aspektów ewolucji człowieka.
      Baza ROAD to wynik 15 lat pracy naukowców, którzy przeanalizowali ponad 5000 publikacji w wielu językach, w tym w angielskim, chińskim, francuskim, włoskim czy portugalskim. Powstała w ten sposób łatwa w użyciu interaktywna mapa stanowisk archeologicznych. Użytkownik może na jej podstawie tworzyć też własne mapy obejmujące konkretne kultury, obszary geograficzne czy okresy historyczne.
      Naukowcy mogą zadawać ROAD zaawansowane zapytania, dzięki którym sprawdzą na przykład, obecność konkretnej kategorii kamiennych narzędzi w Afryce czy dystrybucję konkretnych gatunków zwierząt w interesujących ich okresach, jak chociażby podczas wycofywania się lądolodu. Takie zapytania dostarczą naukowcom olbrzymiej ilości danych, które później mogą wykorzystać do dalszej pracy za pomocą zaawansowanych metod wizualizacji czy analizy, mówi Kandel.
      Baza pokazuje tez, że znaczna część naszej wiedzy pochodzi z bardzo niewielu dobrze przebadanych regionów, jak Afryka Południowa i Wschodnia, Europa czy Azja Centralna i Wschodnia. Większa część obszarów planety to archeologiczna biała plama. Badanie tych obszarów może przynieść w przyszłości niezwykle ekscytujące odkrycia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Cyfrowa rekonstrukcja mięśni słynnej Lucy, przedstawicielki gatunku Australopithecus afarensis, pokazuje, że potężna mięśnie nóg i miednicy były przystosowane do chodzenia pod drzewach, ale mięśnie kolan pozwalały na przyjęcie w pełni wyprostowanej postawy. Lucy żyła na terenie dzisiejszej Etiopii przed ponad 3 milionami lat. Jej skamieniałe szczątki odkryto w latach 70. ubiegłego wieku. Teraz doktor Ashleigh Wiseman z Wydziału Archeologii Cambridge University wykonała trójwymiarową rekonstrukcję jej mięśni.
      Lucy to przykład jednego z najlepiej zachowanych szkieletów rodzaju Australopithecus. Doktor Wiseman wykorzystała opublikowane ostatnio dane i była w stanie odtworzyć po 36 mięśni w każdej z nóg Lucy. Symulacja wykazała, że australopitek był znacznie mocnej umięśniony niż człowiek współczesny. Na przykład główne mięśnie w łydkach i udach były dwukrotnie większe niż u H. sapiens. My mamy znacznie większy stosunek tłuszczu do mięśni. U człowieka współczesnego mięśnie stanowią 50% masy uda. U Lucy było to nawet 74%.
      Paleoantropolodzy sprzeczają się, jak Lucy chodziła. Według jednych, jej sposób poruszania się przypominał kaczy chód, jaki widzimy u szympansów, gdy chodzą na dwóch nogach. Zdaniem innych, jej ruchy były bardziej podobne do naszego chodu w pozycji całkowicie wyprostowanej. W ciągu ostatnich 20 lat przewagę zaczęła zdobywać ta druga opinia. Badania Wiseman to kolejny argument za w pełni wyprostowaną Lucy. Wynika z nich bowiem, że mięśnie prostowniki stawu kolanowego, do których należą mięsień czworogłowy uda, naprężacz powięzi szerokiej uda, krawiecki i stawowy kolana, i dźwignia jaką zapewniały, pozwalały na wyprostowanie kolana w takim samym stopniu jak u zdrowego H. sapiens.
      Możemy stwierdzić zdolność Lucy do poruszania się w pozycji wyprostowanej tylko wówczas, jeśli zrekonstruujemy mięśnie i sposób ich pracy. Obecnie jesteśmy jedynym zwierzęciem, które jest w stanie stać w pozycji wyprostowanej z wyprostowanymi kolanami. Budowa mięśni Lucy wskazuje, że poruszała się w pozycji wyprostowanej równie sprawnie jak my. Także wówczas, gdy przebywała na drzewie. Lucy prawdopodobnie poruszała się w sposób, jakiego obecnie nie obserwujemy u żadnego żyjącego gatunku, mówi Wiseman.
      Australopithecus afarensis żył na rozległych sawannach oraz w gęstych lasach. Wykonana przez Wiseman rekonstrukcja pokazuje, że w obu tych środowiskach poruszał się równie sprawnie.
      Rekonstrukcja mięśni była już wykorzystywana na przykład do oceny prędkości biegu gatunku Tyrannosaurus rex. Wykorzystując podobną technikę do badania naszych przodków możemy odkryć całe spektrum sposobów poruszania się, które napędzały naszą ewolucję. W tym i te zdolności, które utraciliśmy, mówi Wiseman.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...