Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Gdy starzejące się naczynia sztywnieją, mózg przejmuje na siebie większe obciążenie związane z biciem serca

Recommended Posts

Pamięć pogarsza się z wiekiem, bo mózg przejmuje na siebie większe obciążenie związane z biciem serca. Z upływem czasu duże tętnice sztywnieją, co ostatecznie prowadzi do uszkodzenia naczyń kapilarnych w mózgu. Jak można się domyślić, nie służy to tkankom i sprawnemu przebiegowi procesów poznawczych.

Proponujemy ciąg wydarzeń, który tłumaczy, w jaki sposób starzenie mózgu i naczyń są ze sobą powiązane - podkreśla prof. Lars Nyberg z Uniwersytetu w Umeå.

Nyberg i Anders Wåhlin stworzyli model, który rozpoczyna się od bicia serca. Bazuje on na licznych badaniach z ostatnich 5 lat i wyjaśnia, czemu niektóre procesy poznawcze mogą być szczególnie zagrożone.

Gdy ludzkie ciało się starzeje, duże tętnice, np. aorta, sztywnieją i tracą sporą część zdolności do absorbowania wzrostów ciśnienia generowanych w momencie wyrzutu krwi do tętnic. Pulsacyjne zmiany ciśnienia są więc przenoszone na mniejsze naczynia, między innymi w mózgu. Najdrobniejsze naczynia w mózgu, kapilary, są poddawane zwiększonemu stresowi powodującemu uszkodzenia komórek znajdujących w ścianach naczyń i w ich otoczeniu, a należy pamiętać, że są one ważne dla regulacji mikrokrążenia mózgowego. Jeśli najmniejsze naczynia są uszkodzone, ma to negatywny wpływ na zdolność zwiększania dostaw krwi do mózgu w sytuacji, kiedy mamy sobie poradzić z wymagającymi procesami poznawczymi.

Wg Szwedów, szczególnie podatną strukturą jest hipokamp, czyli część mózgu odpowiedzialna m.in. z pamięć epizodyczną. Dzieje się tak, bo znajduje się on w pobliżu dużych naczyń i jest stosunkowo wcześnie wystawiany na wpływ zwiększonego obciążenia.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naturalne składniki jabłek i innych owoców stymulują wytwarzanie nowych komórek w mózgu, co może mieć znaczenie dla procesów uczenia się i zapamiętywania, informują naukowcy z australijskiego University of Queenland oraz Niemieckiego Centrum Chorób Neurodegeneracyjnych. Badania prowadzone in vitro oraz na myszach wskazują, że kwercetyna i podobne związki obficie występujące w jabłkach, wspomagają tworzenie komórek w mózgu.
      Nasza praca pokazuje, że zarówno flawonoidy jak i kwas 3,5-dihydroksybenzoesowy wspomagają neurogenezę nie tylko przez aktywację prekursorowej proliferacji komórek, ale również wpływając na przebieg cyklu komórkowego, przeżycie komórek i różnicowanie się neuronów, stwierdzają autorzy badań.
      To kolejne z całej serii badań pokazujących, jak istotne jest prawidłowe odżywianie się dla utrzymania zdrowia. Jak się okazuje, ważne dla zdrowia naszego mózgu.
      Neurogeneza w dorosłym hipokampie to szczególny przykład plastyczności mózgu. Mamy tutaj do czynienia z neurogenezą trwającą przez całe życie, w czasie której neurony włączane są w już istniejącą strukturę, co wpływa na uczenie się i pamięć, dodają naukowcy. A flawonoidy, które są obecne w warzywach i owocach, mogą wpływać na ścieżki sygnałowe procesów poznawczych.
      Jako, że jabłka są jednymi z najchętniej spożywanych owoców Tara Louise Walker i Gerd Kempermann postanowili sprawdzić, czy zawierają one jakieś związki wspomagające neurogenezę w dorosłym hipokampie. Najpierw przyjrzeli się kwercetynie, najbardziej rozpowszechnionemu flawonoidowi w skórce jabłek. Następnie rozszerzyli swoje badania na inne podobne związki obecne w jabłkach.
      Ich badania potwierdziły, że wysokie stężenie związków fitochemicznych obecnych w jabłkach stymuluje pojawianie się nowych neuronów. Najpierw badania in vitro wykazały, że w komórki z mysiego mózgu w obecności kwercetyny lub kwasu 3,5-dihydroksybenzoesowego (DHBA) tworzą więcej neuronów i są chronione przed śmiercią komórkową. Odkryliśmy, że 3,5-DHBA nie tylko zwiększa proliferację i neurogenezę neuralnych komórek progenitorowych, ale również zwiększa tempo dojrzewania tych komórek, czytamy w artykule Apple Peel and Flesh Contain Pro-neurogenic Compounds.
      Przeprowadzone następnie badania na myszach potwierdziły, że u zwierząt, którym podawano wysokie dawki kwercetyny lub DHBA, w strukturach mózgu odpowiedzialnych za uczenie się i pamięć pojawiło się więcej neuronów. Wpływ obu środków na mózg był podobny do wpływu ćwiczeń fizycznych, o którym wiadomo, że stymuluje neurogenezę.
      Później uczeni potwierdzili jeszcze, że wpływ kwercetyny na przeżycie i różnicowanie się neuralnych komórek progenitorowych w dorosłym hipokampie jet podobny do wpływu resweratrolu i EGCG.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Emocjonalne nagłówki prasowe wpływają na nasz osąd innych ludzi, nawet jeśli uważamy ich źródło za niewiarygodne, stwierdzili neuropsycholodzy z berlińskiego Uniwersytetu Humblodtów.
      Dzięki postępowi technologicznemu plotki, kłamstwa, półprawdy rozpowszechniają się błyskawicznie i bardzo szeroko. Są bez przerwy dostępne w sieci. Mimo, że ich prawdziwość można często łatwo zakwestionować, wpływają one na przekonania pojedynczych ludzi oraz na opinię społeczną. Do niedawna jednak niewiele wiedzieliśmy o tym, jak fałszywe informacje są przetwarzane w mózgu i na ich procesy neurologiczne wpływają na nasz osąd.
      Najnowsze badania na polu neuropsychologii wskazują, że emocjonalnie nacechowane nagłówki wywierają duży wpływ na sposób przetwarzania informacji i na nasz osąd na temat innych ludzi, nawet gdy uważamy, że źródło tych nagłówków jest niewiarygodne.
      Wydawałoby się, że to, na ile wiarygodne uważamy dane źródło informacji, powinno wpływać na to, jak oceniamy samą informację podawaną przez źródło. Naukowcy z Uniwersytetu Humboldtów postanowili sprawdzić, czy nasza ocena wiarygodności źródła informacji wpływa na naszą ocenę nacechowanych emocjonalnie nagłówków pochodzących z tego źródła.
      W tym celu skonfrontowali badane osoby z fikcyjnymi nagłówkami umieszczonymi na witrynach internetowych, które miały identyczny wygląd jak znane niemieckie witryny informacyjne. Badani mieli do czynienia z nagłówkami nacechowanymi emocjonalnie oraz z nagłówkami neutralnymi dotyczącymi fikcyjnych osób. Po przeczytaniu nagłówków robiono krótką przerwę, a następnie rejestrowano aktywność mózgu w czasie, gdy badani mieli wyrazić swoją opinię o opisanych fikcyjnych osobach na podstawie ich zdjęć.
      Mimo, że badani różnie oceniali wiarygodność witryn, to okazało się, że nie odgrywało to roli w formowanych przez nich opiniach. Okazało się za to, że wpływ na opinie miał ładunek emocjonalny zawarty w nagłówku. Nawet jeśli badany nie ufał danemu źródłu informacji, to pod wpływem emocjonalnego nagłówka wyrażał skrajne opinie o osobach, których negatywne lub pozytywne zachowanie zostało opisane w nagłówku. Gdy nagłówek opisywał zachowanie negatywne, badani uważali daną osobę za niesympatyczną i posiadającą cechy negatywne, gdy zaś w nagłówku opisano zachowania pozytywne, opinia na temat danej osoby była pozytywna.
      W czasie eksperymentu rejestrowano za pomocą EEG aktywność mózgu badanych. Pozwala to odróżnić szybkie emocjonalne reakcje, od odpowiedzi wolniejszych, przemyślanych. Naukowcy spodziewali się zobaczyć na wykresach EEG najpierw szybką emocjonalną reakcję na nagłówek, a następnie wolniejszą reakcję, świadczącą o tym, że badany rozważa wiarygodność źródła i zastanawia się nad oceną opisanej osoby. Jednak niczego takiego nie zauważono. Zarówno wczesna jak i późna reakcja mózgu była szybka, emocjonalna i niezależna od wiarygodności źródła.
      Uczeni doszli do wniosku, że nasze zastrzeżenia co do wiarygodności źródła nie wpływają na ocenę informacji gdy jest ona nacechowana emocjonalnie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pojedyncza zmiana genetyczna mogła zdecydować, że to Homo sapies wygrał rywalizację ewolucyjną z neandertalczykiem i denisowianinem. To fascynujące, że pojedyncza zmiana w ludzkim DNA mogło doprowadzić do zmiany połączeń w mózgu, mówi główny autor badań opublikowanych na łamach Science, profesor Alysson R. Muotri z Uniwersytetu Kalifornijskiego w San Diego (UCSD).
      Muotri, profesor pediatrii oraz medycyny komórkowej i molekulanej od dawna bada kwestie związane z rozwojem mózgu oraz nieprawidłowościami prowadzącymi do schorzeń neurologicznych. Interesuje go również ewolucja mózgu, a szczególnie to, co różni nasz mózg od mózgów najbliżej spokrewnionych z nami ludzi – neandertalczyków i denisowian.
      Badania nad ewolucją wykorzystują głównie dwa narzędzia – genetykę i badanie skamieniałości. Problem jednak w tym, że żadne z tych narzędzi nie mówi nam zbyt wiele o budowie i funkcjonowaniu mózgu. Mózg nie ulega bowiem fosylizacji, nie ma więc czego badać.
      Muotri zdecydował więc na wykorzystanie komórek macierzystych, narzędzia, które jest rzadko używane w rekonstrukcjach ewolucyjnych. Komórki macierzyste mogą zostać wykorzystane do tworzenia w laboratorium organoidów, czyli zminiaturyzowanej uproszczonej wersji badanego narządu. Muotri i jego zespół są pionierami w wykorzystywaniu komórek macierzystych do porównywania ludzi z innymi naczelnymi, jak szympansy czy bonobo. Dotychczas jednak uważana, że wykorzystanie tej techniki do porównania z gatunkami wymarłymi nie jest możliwe.
      W ramach najnowszych badań naukowcy katalogowali różnice genetyczne pomiędzy H. sapiens a neandertalczykami i denisowianami. Wykorzystując zmianę znalezioną w jednym tylko genie udało im się, za pomocą komórek macierzystych, uzyskać „neandertalski” organoid mózgu. Nie wiemy, kiedy i jak doszło do tej zmiany. Wydaje się jednak, że była ona znacząca i pozwala wyjaśnić umiejętności współczesnego człowieka dotyczące zachowań społecznych, języka, kreatywności, umiejętności adaptacji i wykorzystania technologii, Muotri.
      Naukowcy początkowo znaleźli 61 genów, których wersje odróżniały nas od naszych wymarłych kuzynów. Jednym z tych zmienionych genów był NOVA1. Przykuł on uwagę Muotriego, gdyż wiadomo, że jest to ważny gen regulatorowy, wpływający na wiele innych genów podczas wczesnych etapów rozwoju mózgu. Naukowcy wykorzystali więc technologię edytowania genów CRISPR do stworzenia współczesnych ludzkich komórek macierzystych zawierających neandertalską wersję genu NOVA1. Następnie pokierowali komórkami macierzystymi tak, by rozwijały się w komórki mózgowe, uzyskując w ten sposób „neandertalskie” organoidy mózgu.
      Organoidy mózgu to niewielkie grupy komórek mózgowych uzyskane z komórek macierzystych. Są one użytecznym modelem do badania genetyki, rozwoju chorób, reakcji mózgu na infekcje czy na leki.
      Stworzone przez kalifornijskich uczonych „neandertalskie” organoidy już na pierwszy rzut oka wyglądały inaczej. Miały wyraźnie inny kształt, co było wydać nawet gołym okiem. Gdy uczeni bliżej im się przyjrzeli okazało się, że organoidy H. sapiens i organoidy „neandertalskie” różnią się także sposobem proliferacji komórek oraz tworzenia synaps. Miały nawet odmienne proteiny biorące udział w tworzeniu synaps. A impulsy elektryczne generowane w „neandertalskich” organoidach były silniejsze na początkowym etapie rozwoju, jednak nie dochodziło w nich do takiej synchronizacji jak w organoidach H. sapiens.
      Zdaniem Muotriego, sposób działania i zmian w sieci neuronowej „neandertalskich” organoid jest podobny do działania, dzięki któremu noworodki naczelnych nieczłowiekowatych są w stanie nabywać nowe umiejętności znacznie szybciej niż ludzkie noworodki.
      Skupiliśmy się tylko na jednym genie, którego wersje różnią się pomiędzy człowiekiem współczesnym a wymarłymi kuzynami. Na następnych etapach badań chcemy skupić się na pozostałych 60 genach i sprawdzić, co dzieje się, gdy jeden, dwa lub więcej z nich, zostanie zmienionych, mówi Muotri.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Węgiel, jeden z najbardziej rozpowszechnionych pierwiastków we wszechświecie, jest podstawowym budulcem organizmów żywych. Cieszy się więc szczególnym zainteresowaniem naukowców. Wiemy, że struktura krystaliczne węgla ma wpływ na jego właściwości. Naukowcy obliczyli, że przy ciśnieniu przekraczającym 1000 GPa powinno dojść do zmiany struktury atomowej tego pierwiastka. Naukowcy z Oksfordu i LLNL poddali właśnie węgiel rekordowemu ciśnieniu 2000 GPa. To 5-krotnie więcej niż w jądrze Ziemi. Takie ciśnienie może panować we wnętrzach niektórych egzoplanet.
      Odkryliśmy, że – ku naszemu zaskoczeniu – w takich warunkach nie doszło do żadnej przewidywanej zmiany fazy w węglu. Zachował on swoją krystaliczną strukturę do najwyższego ciśnienia, jakiemu go poddaliśmy. Te same ultrasilne wiązania, które są odpowiedzialne za to, że przy ciśnieniu atmosferycznym diament bezterminowo zachowuje swoją strukturę, prawdopodobnie zapobiegają zmianie fazy przy ciśnieniu przekraczającym 1000 GPa, mówi główna autorka badań, fizyk Amy Jenei z Lawrence Livermore National Laboratory (LLNL).
      Eksperymenty były prowadzone w ramach programu Discovery Science, dzięki któremu zewnętrzne zespoły badawcze mają łatwy dostęp do jednego z flagowych ośrodków LLNL – National Ignition Facility (NIF).
      Profesor Justin Wark z University of Oxford, który odpowiadał za teoretyczną część badań stwierdził, że, prowadzony przez NIF projekt Discovery Science przynosi olbrzymie korzyści środowisku akademickiemu. Nie tylko daje nam możliwość przeprowadzenia eksperymentów, których nigdzie indziej przeprowadzić się nie da, ale – co bardzo ważne – daje studentom, którzy przecież w przyszłości będą naukowcami, szansę pracy w unikatowej jednostce badawczej.
      Podczas eksperymentów, w których udział brali też naukowcy z University of Rochester i University of York, wykorzystano wysokoenergetyczne źródło laserów w NIF do poddania stałej formy węgla ciśnieniu sięgającemu 2000 GPa. Strukturę próbki badano za pomocą rentgenografii strukturalnej. Jednocześnie niemal 2-krotnie pobito rekord ciśnienia, przy którym wykorzystano tę technikę.
      Badania wykazały, że nawet przy tak ekstremalnych ciśnieniach węgiel zachował swoją strukturę, co wskazuje na istnienie wysokoenergetycznych barier zapobiegających przejściu fazowemu. Wciąż otwarte pozostaje pytanie, czy we wnętrzach egzoplanet istnieje mechanizm pozwalający przezwyciężyć tę barierę i umożliwiający pojawienie się przewidywanych form węgla. Potrzebne są kolejne badania z wykorzystaniem alternatywnych metod kompresji lub innej formy węgla, wymagającej mniejszych energii do wywołania zmiany struktury.
      O wynikach badań poinformowano na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom.
      Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych.
      U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb.
      Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu.
      Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami.
      Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj.
      Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach.
      Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań.
      To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci.
      Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań.
      Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...