Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' ciśnienie'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Fizycy z University of Rochester poinformowali o stworzeniu pierwszego w historii nadprzewodnika działającego w temperaturze pokojowej. Uzyskany przez nich związek wodoru, węgla i siarki wykazuje właściwości nadprzewodzące w temperaturze dochodzącej do 15 stopni Celsjusza. Po raz pierwszy w historii można rzeczywiście stwierdzić, że osiągnięto nadprzewodnictwo w temperaturze pokojowej, mówi Ion Errea z Uniwersytetu Kraju Basków, fizyk-teoretyk zajmujący się materią skondensowaną. Wyniki badań opublikowano na łamach Nature. Naukowcy od dawna poszukują nadprzewodników działających w temperaturze pokojowej. Materiały takie zrewolucjonizowałyby wiele dziedzin życia. Pozwoliłyby na bezstratne przesyłanie energii liniami wysokiego napięcia, budowę lewitujących pociągów wielkich prędkości czy stworzenie znacznie bardziej wydajnych komputerów. Niestety, opracowany przez Amerykanów materiał nigdy nie posłuży do stworzenia wspomnianych urządzeń, gdyż wykazuje właściwości nadprzewodzące przy ciśnieniu sięgającym 75% ciśnienia panującego w ziemskim jądrze. Ludzie od dawna marzą o nadprzewodnikach. Dlatego też mogą nie docenić tego, co zostało osiągnięte, gdyż potrzebujemy do tego wysokich ciśnień, mówi Chris Pickard z University of Cambridge. Teraz, gdy udowodniono, że nadprzewodnictwo w temperaturze pokojowej jest możliwe, należy jeszcze znaleźć materiał, który będzie nadprzewodnikiem przy ciśnieniu atmosferycznym. Na szczęście niektóre cechy nowego związku sugerują, że możliwe będzie znalezienie odpowiedniego materiału. Opór elektryczny to zjawisko, które ma miejsce, gdy przemieszczające się elektrony zderzają się z atomami metalu, w którym podróżują. W 1911 roku odkryto, że w niskich temperaturach elektrony wywołują drgania w sieci atomowej metallu, a w wyniku tych drgań elektrony łączą się w pary Coopera. Różne prawa fizyki kwantowej powodują, że pary takie przemieszczają się przez sieć krystaliczną metalu, nie napotykając na żaden opór. Jakby jeszcze tego było mało, tworzą one „nadprzewodzący płyn”, który posiada silne pole magnetyczne, pozwalające np. na osiągnięcie magnetycznej lewitacji nad nadprzewodzącymi szynami kolejowymi. W 1968 Neil Ashcroft z Cornell University stwierdził, że w osiągnięciu nadprzewodnictwa powinny pomóc atomy wodoru. Co prawda potrzeba jest niezwykle wysokich ciśnień, by uzyskać sieć krystaliczną wodoru, jednak praca Ashcrofta dawała nadzieję, że uda się znaleźć taki związek wodoru, dzięki któremu będzie to możliwe przy niższych ciśnieniach. Szybkich postępów zaczęto dokonywać w XXI wieku, kiedy to z jednej strony pojawiły się potężniejsze komputery, pozwalające na przeprowadzanie teoretycznych obliczeń i warunków, jakie powinny być spełnione, by osiągnąć nadprzewodnictwo, z drugiej zaś rozpowszechniło się użycie kompaktowych komór diamentowych, pozwalających na osiąganie bardzo wysokich ciśnień. Badania tego typu są bardzo kosztowne, o czym świadczy chociażby przykład z Rochester. Zespół naukowy, który pochwalił się osiągnięciem nadprzewodnictwa w temperaturze pokojowej, posiłkował się obliczeniami i intuicją. Podczas prac testowano wiele związków wodoru, z różną zawartością wodoru. Konieczne było bowiem znalezienie odpowiednich proporcji tego pierwiastka. Jeśli będziemy mieli zbyt mało wodoru, nie uzyskamy dobrego nadprzewodnika. Jeśli będzie go zbyt dużo, to formę metaliczną przybierze on przy ciśnieniach, które niszczą diamentowe ostrza komory. W czasie swoich badań uczeni zniszczyli dziesiątki par takich ostrzy, z których każda kosztuje 3000 USD. Budżet na diamenty to największy problem, przyznaje Ranga Dias, szef zespołu badawczego. Dzisiejszy sukces był możliwy dzięki wykorzystaniu osiągnięć niemieckich naukowców, którzy w 2015 roku uzyskali nadprzewodzący siarkowodór w temperaturze -70 stopni Celsjusza. Amerykanie również rozpoczęli swoją pracę od siarkowodoru. Dodali do niego metan, a całość przypiekli laserem. Byliśmy w stanie wzbogacić całość i wprowadzić do systemu odpowiednią ilość wodoru, by utrzymać pary Coopera w wysokich temperaturach, wyjasnia Ashkan Salamat. Naukowcy przyznają, że nie wiedzą dokładnie, jak wygląda ich materiał. Wodór jest zbyt mały, by było go widać w standardowym próbkowaniu struktury, nie wiadomo zatem, jak dokładnie wygląda sieć krystaliczna uzyskanego związku, ani nawet jaka jest jego dokładna formuła chemiczna. Uzyskane wyniki nie do końca zgadzają się też z wcześniejszymi teoretycznymi przewidywaniami. Niewykluczone, że wysokie ciśnienie w jakiś nieprzewidywalny sposób zmieniło badaną substancję, dzięki czemu udało się uzyskać tak dobre nadprzewodnictwo w temperaturze pokojowej. Obecnie Dias i jego grupa pracują nad dokładnym określeniem budowy swojej substancji. Gdy już będą to wiedzieli, teoretycy będą mogli przystąpić do obliczeń, pozwalających na dalsze udoskonalenie przepisu na nadprzewodnik w temperaturze pokojowej. Dotychczas udowodniono, że próba uzyskania działającego w temperaturze pokojowej nadprzewodnika złożonego z wodoru i jeszcze jednego pierwiastka to ślepy zaułek. Jednak trójskładnikowe związki mogą być rozwiązaniem problemu. Szczególnie obiecująco wygląda tutaj dodanie węgla do całości. Węgiel ma bardzo silne wiązania kowalencyjne i, jak się wydaje, zapobiega on rozpadaniu się par Coopera przy mniejszym ciśnieniu. Ciśnienie atmosferyczne będzie tutaj bardzo dużym wyzwaniem. Ale jeśli do równania dodamy węgiel, to jest to bardzo dobry prognostyk na przyszłość, mówi Eva Zurek z zespołu obliczeniowego, który współpracuje z grupą Diasa. « powrót do artykułu
  2. Jednym ze schorzeń, w których najczęściej przepisuje się medyczną marihuanę, jest jaskra. Tymczasem naukowcy z Indiana University odkryli, że ważny składnik marihuany zwiększa ciśnienie w gałce ocznej, a to właśnie wzrost ciśnienia jest przyczyną rozwoju jaskry. Związkiem chemicznym, który zwiększa ciśnienie w gałce ocznej jest kannabidiol (CBD). W wielu stanach USA zatwierdzono go np. do leczenia epilepsji u dzieci, jest coraz powszechniej dodawany do gum do życia, kremów czy zdrowej żywności. Tymczasem naukowcy z Indiany ostrzegają, że CBD może mieć zgubny wpływ na oczy. Wyniki ich badań opublikowano właśnie w piśmie Investigative Ophthalmology & Visual Science. Nasze badania każą zadać poważne pytania o związek pomiędzy głównym składnikiem konopi a zdrowiem. Wskazują też, że powinniśmy dowiedzieć się więcej o potencjalnych skutkach ubocznych CBD, szczególnie u dzieci, mówi główny autor badań Alex Straiker. Prowadzone na myszach badania wykazały, że CBD zwiększa ciśnienie w gałce ocznej o 18% i efekt ten utrzymuje się przez co najmniej 4 godziny od podania. Z kolei THC, główny składnik psychoaktywny marihuany, zmniejsza ciśnienie w gałce ocznej. Jednak w połączeniu z CBD efekt ten jest blokowany. Badacze z Indiany zauważyli też, że po podaniu myszom THC doszło do zmniejszenia ciśnienia w gałce ocznej, a efekt ten był większy u samców niż u samic. To wskazuje, że THC słabiej działa na samice, nie wiadomo jednak, czy dotyczy to też psychoaktywnego działania tego związku. Różnice pomiędzy samcami a samicami oraz fakt, że CBD zwiększa ciśnienie w gałce ocznej, co jest najważniejszym czynnikiem ryzyka w jaskrze, to ważne spostrzeżenia tych badań. Istotnym jest też stwierdzenie, że CBD znosi dobroczynne efekty THC, mówi Straiker. Najnowsze badania są też pierwszymi, podczas których zidentyfikowano dwa konkretne neuroreceptory – CB1 i GPR18 – za pośrednictwem których THC zmniejsza ciśnienie w gałce ocznej. « powrót do artykułu
  3. Od dawna do obniżania ciśnienia wykorzystywane są zioła, takie jak lawenda czy rumianek. Ostatnio Kalifornijczykom udało się wskazać mechanizm molekularny, który odpowiada za ich hipotensyjne działanie. Badanie, którego wyniki ukazały się w Proceedings of the National Academy of Sciences (PNAS), pokazuje, że wiele z roślin wykorzystywanych do obniżenia ciśnienia aktywuje specyficzny kanał potasowy (KCNQ5) w naczyniach krwionośnych. Ekspresja KCNQ5 i innych kanałów potasowych, w tym KCNQ1 i KCNQ4, zachodzi w mięśniówce gładkiej naczyń. Aktywowany KCNQ5 rozkurcza naczynia; to mechanizm, który przynajmniej po części odpowiada za hipotensyjny (obniżający ciśnienie) wpływ pewnych roślin. Odkryliśmy, że aktywacja KCNQ5 może być mechanizmem molekularnym, wspólnym dla zróżnicowanego zestawu roślinnych hipotensyjnych leków tradycyjnych. Analizowaliśmy m.in. lawendę wąskolistną (Lavandula angustifolia). Zauważyliśmy, że należy ona do najefektywniejszych aktywatorów kanału KCNQ5, podobnie jak wyciąg z nasion kopru włoskiego i ekstrakt z rumianku - opowiada prof. Geoff Abbott z Uniwersytetu Kalifornijskiego w Irvine. « powrót do artykułu
  4. Pamięć pogarsza się z wiekiem, bo mózg przejmuje na siebie większe obciążenie związane z biciem serca. Z upływem czasu duże tętnice sztywnieją, co ostatecznie prowadzi do uszkodzenia naczyń kapilarnych w mózgu. Jak można się domyślić, nie służy to tkankom i sprawnemu przebiegowi procesów poznawczych. Proponujemy ciąg wydarzeń, który tłumaczy, w jaki sposób starzenie mózgu i naczyń są ze sobą powiązane - podkreśla prof. Lars Nyberg z Uniwersytetu w Umeå. Nyberg i Anders Wåhlin stworzyli model, który rozpoczyna się od bicia serca. Bazuje on na licznych badaniach z ostatnich 5 lat i wyjaśnia, czemu niektóre procesy poznawcze mogą być szczególnie zagrożone. Gdy ludzkie ciało się starzeje, duże tętnice, np. aorta, sztywnieją i tracą sporą część zdolności do absorbowania wzrostów ciśnienia generowanych w momencie wyrzutu krwi do tętnic. Pulsacyjne zmiany ciśnienia są więc przenoszone na mniejsze naczynia, między innymi w mózgu. Najdrobniejsze naczynia w mózgu, kapilary, są poddawane zwiększonemu stresowi powodującemu uszkodzenia komórek znajdujących w ścianach naczyń i w ich otoczeniu, a należy pamiętać, że są one ważne dla regulacji mikrokrążenia mózgowego. Jeśli najmniejsze naczynia są uszkodzone, ma to negatywny wpływ na zdolność zwiększania dostaw krwi do mózgu w sytuacji, kiedy mamy sobie poradzić z wymagającymi procesami poznawczymi. Wg Szwedów, szczególnie podatną strukturą jest hipokamp, czyli część mózgu odpowiedzialna m.in. z pamięć epizodyczną. Dzieje się tak, bo znajduje się on w pobliżu dużych naczyń i jest stosunkowo wcześnie wystawiany na wpływ zwiększonego obciążenia. « powrót do artykułu
×
×
  • Create New...