Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Czarna dziura, która znajduje się w centrum naszej galaktyki, w ciągu zaledwie dwóch godzin zwiększyła swoją jasność 75-krotnie. Naukowcy sądzą, że Sagittarius A* była jeszcze jaśniejsza, nim zaczęli się jej przyglądać. Jeszcze nigdy w historii 20-letnich obserwacji nie zanotowano tak dużej jasności tej czarnej dziury. To jednocześnie największa zaobserwowana zmiana.

Obserwacji dokonał Tuan Do z Keck Observatory. Początkowo sądził, że wyjątkowo jasny punkt, który pojawił się na odczytach to pobliska gwiazda S0-2, jednak szybko zdał sobie sprawę, że to co obserwuje, to rosnąca jasność czarnej dziury.

To było dziwne. Nigdy wcześniej nie widziałem tak jasnej czarnej dziury. Może wpada w nią więcej gazu, przez co staje się bardziej jasna niż kiedyś?, zastanawia się uczony. W ubiegłym roku gwiazda S0-2 wędrowała w pobliżu Sagittariusa A*, co mogło zaburzyć gaz znajdujący się w okolicy i spowodowało, że więcej go trafia do dziury, a być może zwiększanie jasności jest związane z tajemniczą chmurą gazu i pyłu zwaną G2, którą zaobserwowano w 2014 roku. Już wówczas spodziewano się zwiększenia aktywności i fajerwerków, ale nic takiego nie nastąpiło. Astronomowie byli wówczas rozczarowani. Być może, jak mówi Do, coś opóźniło tę chmurę.

Sagittarius A* ma wkrótce zostać zobrazowana przez Event Horizon Telescope. W kwietniu wykonał on pierwsze w historii ludzkości zdjęcie czarnej dziury. Była to M87. Gdy w końcu zobaczymy dokładniejszy obraz centralnej dziury Drogi Mlecznej będziemy mogli o niej więcej powiedzieć.

Oczywiście obserwowane światło, które zwiększyło jasność, nie pochodzi z samej czarnej dziury, a z towarzyszącego jej dysku akrecyjnego. To dysk materii krążącej wokół czarnej dziury, który jest podgrzewany wskutek jej oddziaływania i zaczyna emitować promieniowanie elektromagnetyczne. To właśnie nagłe zwiększenie jego jasności zaobserwował Do.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Określenie, że czarna dziura zwiększyła swoją jasność jest błędne i może wyrabiać fałszywe stereotypy o kosmosie wśród niektórych osób. Swoją jasność mógł zwiększyć świecący dysk akrecyjny wirujący wokół czarnej dziury, np. ze względu na lokalnie większą gęstość materii wpadającej do czarnej dziury. W odległości mniejszej niż promień Schwarzschilda od centrum nieobracającej się czarnej dziury, czyli poza tzw. horyzontem zdarzeń światło widzialne ani żaden obiekt materialny  nie może wydostać się z czarnej dziury.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wiemy :) Natomiast chyba wyjaśnianie istnienia dysku i dlaczego świeci chyba by jeszcze dodatkowo tę dziurę zaciemniło :)
Ale fakt, dodam akapit na koniec :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
10 godzin temu, Astro napisał:

Z naszego punktu widzenia ta materia nie wpada.

Czarne dziury jednak rotują i to zwykle ostro - promień Schwarzschilda nie wystarczy.

Rotują przy braku równowagi, oczywiście jeśli tworzy się dysk akrecyjny musi to nastąpić i przyjmując znane teorie nigdy się ona całkowicie nie zatrzyma, ale to już gdybanie na bazie Kerra Newmana. Można "bezpiecznie" przyjąć promień Schwarzschilda za ostateczną "bezpieczną" odległość horyzontu zdarzeń dla uproszczenia.

 

Jeśli chodzi o materię "wpadającą" pełna zgoda.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
14 godzin temu, Astro napisał:

Z naszego punktu widzenia ta materia nie wpada.

 

3 godziny temu, puzzlemaniak napisał:

Jeśli chodzi o materię "wpadającą" pełna zgoda.

To ja z pytaniem laika. Ta materia nie wpada, bo im bliżej czarnej dziury, tym czas z punktu widzenia odległego obserwatora płynie wolniej i w związku z tym ten obserwator widzi materię spadającą coraz wolniej, tak? To w takim razie, gdy gwiazda się zapada, tworząc czarną dziurę, to czy ten proces zapadania się też trwa (widziany z daleka) nieskończenie długo, czy jakiś skończony czas? Ktoś mi powiedział kilka lat temu na forum KW, że to tylko pewnego rodzaju złudzenie, że spadek trwa coraz wolniej, ale jakoś czuję niedosyt.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
20 hours ago, Astro said:

Czarne dziury jednak rotują i to zwykle ostro - promień Schwarzschilda nie wystarczy.

Horyzont zdarzeń obracającej się czarnej dziury ma takie same ograniczenia jak nieobracającej się czarnej dziury, lecz w przypadku obracającej się czarnej dziury występuje dodatkowa powierzchnia poza horyzontem zdarzeń nazywana ergopowierzchnią określona wzorem:

(r - M)^2 = M*M – (J*cos Θ)^2, gdzie M – masa czarnej dziury, J – moment pędu czarnej dziury, r, Θ – współrzędne Boyera-Linquista. Na powierzchni tej sfery prędkość wirowania otaczającej przestrzeni osiąga prędkość światła. Wewnątrz tej sfery prędkość „ciągnięcia” (wirowania zakrzywionej przestrzeni) jest większa od prędkości światła. Przestrzeń pomiędzy horyzontem zdarzeń a powierzchnią, na której prędkość wirowania dorównuje prędkości światła jest nazywana ergosferą. Cząstki, które dostaną się do ergosfery są zmuszone poruszać się szybciej zyskując energię. Ze względu na to, że znajdują się wciąż poza horyzontem zdarzeń, to mogą opuścić czarną dziurę. Możliwość uzyskania energii z obracającej się czarnej dziury została zaproponowana przez matematyka Rogera Penrose w 1969 i nazywa się procesem Penrose’a.

https://en.wikipedia.org/wiki/Penrose_process

Nie ma jednak niezbitych dowodów, czy mechanizm ten uczestniczy także w procesie formowania jetów – wysokoenergetycznych cząstek wystrzeliwanych z czarnej dziury w jej obszarach biegunowych w kierunku prostopadłym do dysku akrecyjnego. Istnieje możliwość, że proces Penrose’a odpowiada także za rozbłyski gamma.

Horyzont zdarzeń obracającej się czarnej dziury określa wzór:

image.png.703da99d8c3e01f9e1645e0cc12ddfff.png

a = J/(M*c)

gdzie:

rs – promień Schwarzschilda czarnej dziury o takiej samej masie jak obracająca się czarna dziura; J – moment pędu czarnej dziury, M – masa czarnej dziury, c – prędkość światła. Wynika z tego, że właściwy horyzont zdarzeń obracającej się czarnej dziury nie przekracza wartości promienia Schwarzschilda.

 

https://en.wikipedia.org/wiki/Kerr_metric

 

Zbyt uogólniłem swoją pierwszą wypowiedź, gdyż z artykułu jednoznacznie nie wynika czy promieniowanie wydostaje się z dysku akrecyjnego, czy też z ergosfery, którą można uznać za składnik czarnej dziury.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Qion napisał:

Możliwość uzyskania energii z obracającej się czarnej dziury została zaproponowana przez matematyka Rogera Penrose w 1969 i nazywa się procesem Penrose’a.

Laików takich jak ja może zainteresować: https://www.youtube.com/watch?v=QUBr-VzcB18

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pytanie laika
Jeśli materia spada na czarną dziurę, to przyspiesza w kierunku czarnej dziury i zwiększa swoją prędkość dążąc do prędkości światła, której nie może jednak osiągnąć
To czy nie świadczy to o tym, że czarna dziura tak naprawdę jest czarną SWERĄ, w której środku czas nie płynie?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
9 hours ago, Astro said:

Gdy mówimy o powstawaniu i rozwoju horyzontu to mówimy raczej o procesach tej skali, gdzie efekty kwantowe są bardzo istotne, czyli nie mamy definitywnej koncepcji którą można to prosto rozkminić. Spójrz przykładowo na obrazki w tej pracy. Masywna gwiazda (upraszczając) zapada się, nie ma horyzontu i nagle jest? Czy to "cząstki" przekraczają horyzont, czy może jednak ten rozrastając się je pochłania? Skłaniam się ku temu drugiemu rozumieniu procesu.

Procesu pożerania zapadającego się obiektu kosmicznego przez horyzont zdarzeń nie można by się dopatrywać nawet w przypadku gwiazd neutronowych, chociaż rozmiary czarnej dziury i gwiazdy neutronowej są zbliżone. Gdyby obiekt o masie Słońca i promieniu 696,34 tys. km został w nienaturalny sposób ściśnięty do rozmiaru gwiazdy neutronowej lub czarnej dziury, to jego promień wyniósłby odpowiednio 10 km oraz 3km (promień Schwarzschilda). Wielkości te jak widać nie są porównywalne z rozmiarami Słońca, więc pożeranie jest tu raczej metaforą. Przy założeniu stałej gęstości obiektu lub jego warstwy kurczenie przebiegałoby w miarę równomiernie co wynika z prawa grawitacji Newtona, a dla mniejszych obiektów horyzont zdarzeń pojawiłby się w końcu procesu zapadania. W bardzo masywnych obiektach horyzont pojawiłby się szybciej, lecz nadal miałby znacznie mniejszą średnicę niż zapadająca się materia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 hour ago, Astro said:

Gwiazdy masywne, które są protoplastami BH pod koniec życia stanowczo nie są jednorodne, więc takie szkolne rozważania o kant stołu, podobnie jak "prawa grawitacji Newtona".

Gwiazda neutronowa ma stałą gęstość, a jak się ją odpowiednio "podkarmi" to zamieni się w czarną dziurę lub hipotetyczne dziwadełko (ang. strangelet) zbudowane z masy kwarkowo-gluonowej

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 hours ago, Astro said:

Odpuść sobie dziwadełka, bo w jednorożce nie bardzo chce mi się wchodzić. Spójrz ponownie na pierwszy link mojego ostatniego posta. Na dużym obrazku szare rosnące linie wskazują przewidywania dla gwiazd kwarkowych. Jak widzisz, nie bardzo chcą być w zgodzie z rzeczywistością.

Powiedziałbym, że współczesna fizyka istnieje właśnie dzięki "jednorożcom", gdyż zmusza naukowców do weryfikacji dotychczasowych teorii i nakłada na nie dodatkowe warunki brzegowe lub zmusza ich do  zastosowania różniących się praw fizyki np. w odniesieniu do odmiennych typów materi, a nawet opracowania teorii wszystkiego za jaką uważam hipotezę holograficznego wszechświata . W jaki sposób można sobie wyobrazić cząstkę o ujemnej energii w procesie Penrose'a,  istnienie związanej materii kwarkowo-gluonowej w przypadku zaniku grawitacji, bezkolizyjne przenikanie ciemnej materii przez materię barionową pomimo wzajemnego oddziaływania grawitacyjnego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
46 minutes ago, Astro said:

Współczesna fizyka istniej głównie dzięki zarąbistym teleskopom i takim również akceleratorom. Jak za dużo jednorożców tupie, to albo kościół, albo bezsenność. ;)

Teleskopy i akceleratory tylko dostarczają danych wejściowych, których obróbką na bazie istniejących teorii matematyczno-fizycznych muszą zająć się superkoputery zaprogramowane przez zwykłych ludzi, których w przyszłości może zastąpić sztuczna inteligencja. Obróbka danych może potwierdzić lub skomplikować istniejące już hipotezy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic,  dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
      Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
      Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
      Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
      Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po kilkudziesięciu latach poszukiwań astronomowie znaleźli gwiazdy w Strumieniu Magellanicznym. Ten strumień gazowych chmur o dużej prędkości rozciąga się na 600 000 lat świetlnych i znajduje w odległości około 180 000 lat świetlnych od Drogi Mlecznej. Zauważono go po raz pierwszy z 1965 roku, a w 1972 stwierdzono, że łączy on Wielki i Mały Obłok Magellana i jest z nimi powiązany. Pomimo tego, że – wedle obowiązujących teorii naukowych – w strumieniu powinny znajdować się gwiazdy, dotychczas jednoznacznie ich nie odnaleziono. Aż do teraz.
      Vedant Chandra z Center for Astrophysics Harvard & Smithsonian oraz naukowcy z USA i Australii zaobserwowali 13 czerwonych olbrzymów położonych w odległości od 200 do 325 tysięcy lat świetlnych od Ziemi, które mają ten sam moment pędu i podobny skład chemiczny, co gaz w Strumieniu.
      Odkrycia dokonano dzięki analizie katalogu Gaia, w którym znajdują się informacje o ponad miliardzie gwiazd. Naukowcy najpierw odrzucili gwiazdy, które prawdopodobnie należą do Drogi Mlecznej, następnie zaś skupili się na gwiazdach o składzie chemicznym podobnym do składu Strumienia.
      Po raz pierwszy obserwujemy gwiazdy towarzyszące Strumieniowi. To nie tylko rozwiązuje zagadkę samych gwiazd, ale również zdradza nam wiele użytecznych informacji na temat ruchu samego gazu, wyjaśnia Chandra. Obserwacje nowo odkrytych gwiazd pozwolą nie tylko bardziej precyzyjnie określić pozycję i ruch Strumienia, ale również zbadać ruch Obłoków Magellana, galaktyk satelitarnych Drogi Mlecznej.
      Połowa ze zidentyfikowanych gwiazd jest bogata w metale – tutaj trzeba przypomnieć, że metalami w astronomii określa się pierwiastki cięższe od wodoru i helu – i znajduje się bliżej Strumienia, druga połowa jest uboga w metale, te gwiazdy są bardziej rozproszone. Chandra i jego zespół uważają, że różnica ta bierze się z faktu, że gwiazdy bogate w metale uformowały się niedawno w Strumieniu Magellanicznym, natomiast gwiazdy ubogie w metale to populacja wyrzucona z obrzeży Małego Obłoku Magellana podczas interakcji pomiędzy oboma Obłokami. Zdaniem komentujących odkrycie naukowców, gwiazdy o niskiej metaliczności mogą nie być częścią Strumienia, ale są w jakiś sposób z nim powiązane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W centrum naszej galaktyki naukowcy znaleźli nieznane wcześniej struktury. Nieco przypominają one gigantyczne jednowymiarowe włókna materii rozciągające się pionowo w pobliżu centralnej supermasywnej czarnej dziury Sagittarius A*, jakie przed 40 laty zaobserwował Farhad Yusef-Zadek z Northwester University. Jednak nowe struktury, odkryte właśnie przez Yusefa-Zadeha i jego zespół, są znacznie mniejsze i ułożone horyzontalnie od Sgr A*, tworzą coś na podobieństwo szprych koła.
      Populacje obu włókien są podobne w niektórych aspektach, jednak zdaniem odkrywców, mają różne pochodzenie. Giganty mają wyraźny kształt włókien o wysokości dochodzącej do 150 lat świetlnych. Tymczasem włókna poziome są niewielkie, przypominają kropki i kreski z kodu Morse'a, a każde z nich znajduje się tylko po jednej stronie czarnej dziury.
      Byłem zaskoczony tym, co zauważyłem. Dużo czasu zajęła nam weryfikacja tego, co widzimy. I odkryliśmy, że te włókna nie są rozłożone przypadkowo, ale wydają się związane z tym, co wydobywa się z czarnej dziury. Badając je, możemy więcej dowiedzieć się o obrocie czarnej dziury i orientacji dysku akrecyjnego mówi Yusef-Zadeh.
      Profesor fizyki i astronomii, Yusef-Zadech, od ponad 40 lat bada centrum Drogi Mlecznej. W 1984 roku był współodkrywcą olbrzymich pionowych włókien w pobliżu czarnej dziury, a przed 4 laty odkrył w centrum Drogi Mlecznej dwa bąble o długości 700 lat świetlnych każdy. W ubiegłym zaś roku, we współpracy z innymi ekspertami, zarejestrował setki poziomych włókien, które ułożone są w pary lub grupy i bardzo często są równomiernie rozłożone, na podobieństwo strun instrumentu. Uczony, specjalista od radioastronomii, mówi, że coraz częstsze odkrycia tego typu to zasługa nowych technologii i dostępnych instrumentów, szczególnie zaś radioteleskopu MeerKAT z RPA. Ten instrument zmienia reguły gry. Rozwój technologiczny i dedykowany czas obserwacyjny dostarczyły nam nowych informacji. To naprawdę duży postęp techniczny w radioastronomii, wyjaśnia uczony.
      Yusef-Zadeh, który od dekad bada gigantyczne pionowe włókna był bardzo zaskoczony, gdy zauważył też mniejsze poziome struktury. Ich wiek ocenił na 6 milionów lat. Zawsze myślałem o włóknach pionowych i o ich pochodzeniu. Jestem przyzwyczajony do tego, że są pionowe. Nigdy nie przyszło mi na myśl, że mogą być też poziome, mówi. Oba rodzaje włókien są jednowymiarowe, można je obserwować za pomocą fal radiowych i wydają się powiązane z aktywnością czarnej dziury. Ale na tym się ich podobieństwa kończą.
      Włókna pionowe są prostopadłe do płaszczyzny galaktyki. Włókna poziome rozciągnięte są równolegle do płaszczyzny galaktyki, ale promieniście wskazują na jej centrum, gdzie znajduje się Sagittarius A*. Pionowe są magnetyczne i relatywistyczne, poziome wypromieniowują ciepło. Włókna pionowe składają się z cząstek poruszających się niemal z prędkością światła, włókna poziome wydają się przyspieszać gorący materiał znajdujący się w chmurze molekularnej. Dotychczas zaobserwowano setki włókien każdego z rodzajów. Ponadto włókna pionowe mają długość do 150 lat świetlnych, a poziome 5–10 lś. Włókna pionowe znajdują się wszędzie wokół środka galaktyki, natomiast poziomie tylko z jednej strony.
      Odkrycie rodzi więcej pytań niż odpowiedzi. Yusef-Zadeh przypuszcza, że włókna poziome powstały podczas jakiegoś emisji z czarnej dziury, która miała miejsce przed milionami lat. Wydają się wynikiem interakcji materiału, który wypływał, z jakimś pobliskim obiektem. Nasza praca nigdy się nie kończy. Zawsze musimy prowadzić nowe badania i weryfikować naszą wiedzę oraz hipotezy, dodaje uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki Teleskopowi Webba (JWST) naukowcy odkryli najbardziej odległe od Ziemi złożone molekuły organiczne. Zostały one zarejestrowane w galaktyce znajdującej się ponad 12 miliardów lat świetlnych od Drogi Mlecznej. Profesor Joaquin Vieira i świeżo upieczony magistrant Kedar Phadke połączyli siły z uczonymi z Texas A&M University oraz międzynarodową grupą badawczą, by odróżnić sygnały generowane w podczerwieni przez ziarna pyłu od sygnałów molekuł węglowodorów.
      Pył absorbuje i ponownie emituje około połowy promieniowania gwiazd we wszechświecie, przez co promieniowanie podczerwone z odległych obiektów jest niezwykle słabe lub w ogóle niewykrywalne przez naziemne teleskopy, wyjaśnia Vieira. Dzięki olbrzymim możliwościom badawczym Teleskopu Webba oraz wykorzystaniu zjawiska soczewkowania grawitacyjnego można było jednak obserwować odległą galaktykę i badać jej spektrum emisji.
      Badacze skierowali Teleskop Webba na obiekt SPT0418-47, który został wykryty przez South Pole Telescope i zidentyfikowany jako przesłonięta pyłem galaktyka. Odkrycia udało się dokonać dzięki temu, że doszło do soczewkowania grawitacyjnego, które powiększyło SPT0418-47 o 30-35 razy. Gdyby nie soczewkowanie grawitacyjne i dostęp do JWST, nigdy nie bylibyśmy w stanie analizować światła tej galaktyki z powodu zasłaniającego ją pyłu, mówi Vieira.
      Dane spektroskopowe uzyskane przez Teleskop Webba wskazują, że SPT0418-47 zawiera ciężkie pierwiastki, co wskazuje, że powstały w niej i zginęły liczne gwiazdy. Jednak najbardziej interesujące były sygnatury wielopierścieniowych węglowodorów aromatycznych (PAH). Na Ziemi związki te powstają m.in. w silnikach spalinowych czy w wyniku pożarów lasów. Molekuły te uznawane są cegiełki budujące najwcześniejsze formy życia.
      Badania te pokazują nam, że jesteśmy w stanie obserwować struktury przesłonięte drobnym pyłem. Regiony, których przed epoką JWST nie mogliśmy badać. Dane spektroskopowe zdradzają nam skład atomowy i molekularny galaktyk, dostarczając ważnych informacji na temat ich powstawania i ewolucji, dodaje Phadke. Naukowcy przyznają, że nie spodziewali się zaobserwowania molekuł organicznych z tak olbrzymiej odległości. Ich zdaniem to pierwszy krok na drodze ku przyszłym przełomowym obserwacjom.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...