Pentagon opracował gadającą plazmę i laserowe granaty hukowe
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Koty to jedne z najpopularniejszych zwierząt domowych, towarzyszą ludziom od tysięcy lat, wydawałoby się więc, że powinniśmy wiedzieć o nich wszystko. Jednak dopiero teraz naukowcy dowiedzieli się, jak koty... mruczą. Dotychczas sposób wydawania tego dźwięku stanowił zagadkę, gdyż zwierzęta o krótkich strunach głosowych rzadko wydają niskie dźwięki. Tymczasem u kotów niskie mruczenie (w zakresie 20-30 Hz) jest czymś powszechnym. Okazało się, że posiadają one w krtani inne struktury, umożliwiające mruczenie.
Rodzaj dźwięku, do wydawania którego zdolne jest zwierzę, zwykle zależy od rozmiarów strun głosowych. Zwykle im większe zwierzę, tym dłuższe struny głosowe, a co za tym idzie – możliwość wydawania niższych dźwięków. Kot domowy należy do niewielkich zwierząt, ma więc krótkie struny głosowe. Za ich pomocą wydaje wysokie dźwięki, miauczenie czy skrzeczenie. Jednak potrafi też nisko mruczeć.
Obowiązująca obecnie hipoteza – zwana hipotezą AMC – mówiła, że zdolność kotów do mruczenia jest całkowicie uzależniona od „aktywnego kurczenia mięśni”. Christian T. Herbst z Uniwersytetu Wiedeńskiego i jego koledzy z Austrii, Szwajcarii i Czech postanowili przetestować tę hipotezę. Przeprowadzili więc sekcję tchawic ośmiu kotów domowych, które zostały uśpione z powodu różnych chorób. Odkryli, że z tchawicy można uzyskać niski dźwięk, gdy przechodzi przez nią powietrze, zatem skurcze mięśni nie są tutaj potrzebne. Naukowcy zauważyli, że powstanie niskich dźwięków (25-30 Hz) jest możliwe dzięki obecności tkanki łącznej w kocich strunach głosowych. Tkanka ta była znana już wcześniej, ale dotychczas nikt nie łączył jej z mruczeniem. Herbst nie wyklucza jednak, że skurcze mięśni są potrzebne do wzmocnienia pomruku.
Teraz, skoro już dowiedzieliśmy się, jak koty mruczą, do rozwiązania zostaje zagadka, po co to robią.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z National Ignition Facility (NIF) w Lawrence Livermore National Laboratory zauważyli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń. Prowadzone w NIF badania dadzą lepszy wgląd w działanie reaktorów fuzyjnych, w których reakcja inicjowana jest za pomocą potężnych impulsów laserowych.
Specjaliści z całego świata próbują odtworzyć reakcje fuzji jądrowej zachodzące na Słońcu. Ich opanowanie dałoby ludzkości niemal nieograniczone źródło czystej energii. W NIF wykorzystuje się zespół 192 laserów, za pomocą których kompresuje się kapsułki z trytem i deuterem, zapoczątkowując fuzję jądrową. To koncepcja znana jako ICF (Inertial Confinement Fusion – inercyjne uwięzienie plazmy) Przed kilkoma dniami na łamach Nature Physics opublikowano artykuł, z którego dowiadujemy się, że zmierzona energia neutronów – przynajmniej podczas najbardziej intensywnej fazy fuzji – jest wyższa niż spodziewana.
To oznacza, że jony biorące udział w fuzji mają większą energię. To coś czego się nie spodziewaliśmy i nie byliśmy w stanie przewidzieć na podstawie standardowych równań opisujących ICF, mówi fizyk Alastair Moore, główny autor artykułu.
Eksperci nie są pewni, co spowodowało obserwowane zjawisko, podkreślają jednak, że to jeden z najbardziej bezpośrednich pomiarów jonów biorących udział w fuzji. Pomiary oznaczają, że teoretycy będą musieli zmodyfikować teorie i wzory, którymi posługują się specjaliści z NIF. Jest tutaj też powód do optymizmu. Dzięki lepszym teoriom wyjaśniającym obserwowane zjawiska, być może uda się opracować metodę zainicjowania długotrwałej samopodtrzymującej się reakcji.
Zaobserwowanie niespodziewanego zachowania jonów było możliwe dzięki opracowaniu nowej technologii detektorów, nazwanej Cherenkov nToF. Dzięki niej niepewność odnośnie prędkości neutronów wynosi zaledwie 5 km/s czyli 1/10 000. Średnia energia neutronów uzyskiwana podczas reakcji w NIF oznacza, że poruszają się one z prędkością ponad 51 000 km/s.
Jednym z możliwych wyjaśnień zaobserwowanego zjawiska jest stwierdzenie, że jony deuteru i trytu nie są w równowadze. Potrzebujemy bardziej zaawansowanych symulacji, by to zrozumieć. Współpracujemy na tym polu z Los Alamos National Laboratory, Imperial College London i MIT, dodaje Moore.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ponad miliard nastolatków i młodych dorosłych jest potencjalnie zagrożonych utratą słuchu, czytamy na łamach British Medical Journal Global Health. Ryzyko związane jest z częstym używaniem przez nich słuchawek i uczestnictwem w koncertach i innych wydarzeniach związanych ze słuchaniem głośnej muzyki.
Światowa Organizacja Zdrowia ocenia, że obecnie 430 milionów ludzi na świecie ma uszkodzony słuch. Szczególnie narażeni są użytkownicy osobistych urządzeń nagłaśniających, takich jak słuchawki. Już wcześniej opublikowane badania wykazały, ze użytkownicy takich urządzeń bardzo często ustawiają głośność nawet na 105 decybeli. Do tego należy dodać uczestnictwo w wydarzeniach związanych z puszczaniem głośno muzyki, na których średnia głośność wynosi od 104 do 112 dB. Tymczasem bezpieczny poziom dźwięku wynosi 80 dB dla dorosłych i 75 dB dla dzieci.
Autorzy najnowszych badań postanowili sprawdzić, jak bardzo rozpowszechnione wśród młodzieży i młodych dorosłych jest słuchanie nadmiernie głośnych dźwięków. Przejrzeli więc badania opublikowane w językach angielskim, francuskim, hiszpańskim i rosyjskim, które dotyczyły osób w wieku 12–34 lat. Poszukiwano tych badań, w których pod uwagę uwagę wzięto rzeczywistą zmierzoną głośność dźwięków oraz czas narażenia na ich oddziaływanie. Pod uwagę wzięto 33 badania. Część z nich uwzględniała pomiary dotyczące użycia urządzeń osobistych, część uczestnictwa w głośnych imprezach, a część zawierała dane o obu rodzajach narażenia na głośne dźwięki. W sumie badaniami objęto 19 046 uczestników i uwzględniono w nich 17 pomiarów dotyczących używania urządzeń oraz 18 pomiarów odnośnie uczestnictwa w głośnych imprezach.
Z badań wynika, że na zbyt głośne szkodliwe dla słuchu dźwięki naraża się 24% młodzieży i 48% młodych dorosłych. To oznacza, że na utratę słuchu narażonych jest od 670 milionów do 1,35 miliarda osób.
Oczywiście badania mają swoje ograniczenia. Ich autorzy nie brali pod uwagę np. różnic demograficznych w poszczególnych krajach, czy rozwiązań prawnych wprowadzonych w celu ochrony słuchu. Niemniej jednak pokazują one, jak bardzo poważny jest to problem. Ze szczegółami badań można zapoznać się w artykule Prevalence and global estimates of unsafe listening practices in adolescents and young adults: a systematic review and meta-analysis.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdy uczymy się czytać, w naszych mózgach tworzą się połączenia pomiędzy korą wzrokową a obszarami odpowiedzialnymi za przetwarzanie języka. Symbole, które widzimy na papierze, zostają powiązane z dźwiękami i znaczeniami. Wydaje się zatem logiczne, że umiejętność czytania i pisania powinna wpływać na naszą zdolność przetwarzania mowy. Kwestię tę postanowili zgłębić naukowcy z Uniwersytetu w Zurichu.
Wcześniejsze badania wykazały, że w alfabetycznych systemach pisma, gdzie poszczególne znaki oznaczają samogłoski i spółgłoski, rzeczywiście istnienie zależność pomiędzy umiejętnością czytania i pisania a zdolnościami do przetwarzania mowy przez mózg. Jednak na Bliskim Wschodzie, w Afryce Wschodniej oraz Południowej i Wschodniej Azji wiele osób korzysta z systemów pisma, w których znaki oznaczają sylaby lub całe słowa, a nie pojedyncze głoski. Chcieliśmy wiedzieć, czy wykorzystanie pisma niealfabetycznego ma taki sam wpływ na mózg jak pisma alfabetycznego, mówi profesor neurolingwistyki Alexis Hervais-Adelman.
Naukowcy z Zurichu, we współpracy z uczonymi z Instytutu Psycholingwistyki im. Maxa Plancka w Nijmegen oraz zespołem ze stanu Uttar Pradesh w Indiach, odtwarzali zdania nagrane w hindi dwóm grupom osób: umiejącym czytać i pisać oraz analfabetom. Hindi zapisywany jest pismem sylabicznym, dewanagari. Podczas odtwarzania aktywność mózgu badanych była rejestrowana za pomocą rezonansu magnetycznego. Wśród użytkowników hindi nie zauważono różnicy pomiędzy osobami piśmiennymi a niepiśmiennymi w sposobie przetwarzania mowy przez mózg.
Wyniki badań są więc inne, niż uzyskane podczas analogicznych eksperymentów na osobach posługujących się pismem alfabetycznym. W ich przypadku umiejętność pisania i czytania wiązała się z większą aktywnością mózgu w obszarach odpowiedzialnych za przetwarzania mowy podczas słuchania słowa mówionego. Nasze odkrycie przeczy wcześniejszym przypuszczeniom na temat wpływu umiejętności czytania i pisania na sposób przetwarzania języka przez mózg. Okazuje się, że to rodzaj pisma, jakim się posługujemy, wpływa na to, jak nasz mózg przetwarza mowę, mówi Hervais-Adelman.
Pomimo tego, że u badanych użytkowników języka hindi nie było różnic w sposobie przetwarzania mowy, naukowcy zauważyli, że osoby potrafiące czytać i pisać miały lepszą łączność funkcjonalną pomiędzy obszarami mózgu odpowiedzialnymi za grafomotorykę, czyli proces pisania ręcznego, a obszarami mózgu odpowiedzialnymi za przetwarzanie mowy. Połączenia te uaktywniały się, gdy osoby posługujące się pismem słyszały nagrania.
Zdaniem autorów badań, może to sugerować, że to umiejętność pisania, a nie sama umiejętność czytania, wpływa na przetwarzanie języka przez mózg. Tego typu badania mogą – ukierunkowane na związek pomiędzy umiejętnością pisania a przetwarzaniem mowy – w przyszłości doprowadzić do opracowania metod leczenia dysleksji.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.