Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pentagon opracował gadającą plazmę i laserowe granaty hukowe

Recommended Posts

W ramach prowadzonego przez Pentagon projektu Non-Lethal Weapons Program powstały... gadające kule plazmy. Naukowcy pracujący przy projekcie Laser Induced Plasma Effect wykorzystują lasery do zadawania bólu bez wywoływania oparzeń, generowania silnych dźwięków i rozbłysków oraz wydawania poleceń głosowych na odległość.

Wykorzystywane promienie lasera mogą przejść przez szyby budynku, jednak nie penetrują jeszcze innych ciał stałych. Technologia znajduje się w początkowej fazie rozwoju. W przyszłości ma ona posłużyć ochronie baz wojskowych, różnego typu instalacji czy innych stałych elementów. Nie można jednak wykluczyć, że po opracowaniu odpowiedniego źródła zasilania urządzenia będzie można montować na samochodach i np. wykorzystywać je do kontroli tłumów czy ochrony konwojów.

Podczas ostatniej rundy testów specjaliści skupili się na generowaniu ludzkiej mowy za pomocą lasera. Pomysł polega na wytworzeniu plazmy za pomocą jednej wiązki lasera, a następnie na potraktowaniu plazmy kolejnymi wiązkami tak, by wprawić ją w drgania o odpowiedniej częstotliwości i wygenerować ludzką mowę. Właśnie udało się to osiągnąć w warunkach laboratoryjnych.

Dave Law, główny naukowiec w Non-Lethal Wapons Directorate mówi, że kolejnym celem jest wygenerowanie gadającej plazmy w laboratorium w odległości 100 metrów od laserów, później naukowcy będą chcieli przeprowadzić podobny eksperyment, ale na odległości liczonej w kilometrach. Law optymistycznie patrzy w przyszłość nowej technologii. Głównym problemem było bowiem opracowanie i dostrojenie algorytmu generującego mowę. Gdy już go rozwiązano, odległość przestaje być przeszkodą. Można to zastosować wszędzie. Odległość nie robi różnicy. Wystarczy wygenerować plazmę w pobliżu celu, modulować ją i wytworzyć mowę, mówi uczony. Jego zdaniem w ciągu 5 lat technologia będzie już na tyle dojrzała, że będzie można wyposażyć w nią oddziały wojskowe.

Co więcej, ta sama technologia może zostać użyta jeszcze na dwa inne sposoby. Można za jej pomocą uzyskać efekt granatu hukowego. Pozwala bowiem na niemal nieprzerwane generowanie impulsów dźwiękowych o głośności 155 decybeli w pobliżu wyznaczonego celu. To znaczny postęp w porównaniu z granatem hukowym, który generuje maksymalnie dwa impulsy.

Po drugie pozwala ona, za mocą bardzo krótkich impulsów laserowych, wytworzyć niewielką kulkę plazmy i skierować ją, przez ubranie, na skórę człowieka. Plazma wyżłobi w skórze miniaturowy otwór, zbyt mały by mówić o uszkodzeniu skóry, ale wystarczający, by wywołać odczucia bólowe. Można więc w ten sposób powstrzymywać napastnika czy rozpraszać tłum, nie robiąc ludziom krzywdy.

Na załączonym poniżej filmie można posłuchać gadającej plazmy.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ale jakie to daje możliwości w HiFi! Bezprzewodowe głośniki w dowolnym układzie np 1500 na 500 :) I te niekończące się dyskusje na temat jak temperatura i wilgotność powietrza wpływają na jakość dźwięku, i jaki nawilżacz / osuszacz daje najlepszy 'odsłuch'. Całkowicie nowa jakość. Poważnie: przestrzenność dźwięku nie do podrobienia, ale ta prądożerność...

  • Haha 1

Share this post


Link to post
Share on other sites
38 minut temu, radar napisał:

muszę sobie odświeźyć te 10 sezonów ;P

No i namówiłeś :D

btw, pamiętam tylko jeden odcinek z użyciem tego ustrojstwa - szkolenie jaffa w celu skopiowania oddziałów SG - czemu to miało służyć nie mam pojęcia. Że niby nikt się nie zorientuje jak podmienią O'Neilla (two ls) czy Carter? No proszę cię....

Edited by Jajcenty

Share this post


Link to post
Share on other sites
W dniu 9.08.2019 o 06:57, Jajcenty napisał:

I te niekończące się dyskusje na temat jak temperatura i wilgotność powietrza wpływają na jakość dźwięku, i jaki nawilżacz / osuszacz daje najlepszy 'odsłuch'. Całkowicie nowa jakość.

Jak tak to teraz czytam, to nie jestem przekonany, czy to dobrze, bo trzeba też będzie uważać co się jadło ;)

13 godzin temu, Jajcenty napisał:

czemu to miało służyć nie mam pojęcia

Sporo tam był przegięć i naciągania, zwłaszcza w kwestii wykorzystywania (albo właśnie niewykorzystywania!) technologii obcych etc.

Altantis też oglądaliście?

Share this post


Link to post
Share on other sites
30 minut temu, radar napisał:

Altantis też oglądaliście?

Jasne! SHeppard i McKay to klasa, niestety ktoś kto pisał kwestie Weir straszliwie dawał ciała. Nie dałem rady obejrzec SGU - spasowałem gdzieś w okolicy 3 odcinka.

Share this post


Link to post
Share on other sites
W dniu 10.08.2019 o 12:33, Jajcenty napisał:

Nie dałem rady obejrzec SGU

Indeed :)

  • Haha 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z MIT opracowali kwantowy „ściskacz światła”, który redukuje szum kwantowy w laserach o 15%. To pierwszy taki system, który pracuje w temperaturze pokojowej. Dzięki temu możliwe będzie wyprodukowanie niewielkich przenośnych systemów, które będzie można dobudowywać do zestawów eksperymentalnych i przeprowadzać niezwykle precyzyjne pomiary laserowe tam, gdzie szum kwantowy jest obecnie poważnym ograniczeniem.
      Sercem nowego urządzenia jest niewielka wnęka optyczna znajdująca się w komorze próżniowej. We wnęce umieszczono dwa lustra, z których średnia jednego jest mniejsza niż średnica ludzkiego włosa. Większe lustro jest zamontowane na sztywno, mniejsze zaś znajduje się na ruchomym wsporniku przypominającym sprężynę. I to właśnie kształt i budowa tego drugiego, nanomechanicznego, lustra jest kluczem do pracy całości w temperaturze pokojowej. Wpadające do wnęki światło lasera odbija się pomiędzy lustrami. Powoduje ono, że mniejsze z luster, to na wsporniku zaczyna poruszać się w przód i w tył. Dzięki temu naukowcy mogą odpowiednio dobrać właściwości kwantowe promienia wychodzącego z wnęki.
      Światło lasera opuszczające wnękę zostaje ściśnięte, co pozwala na dokonywanie bardziej precyzyjnych pomiarów, które mogą przydać się w obliczeniach kwantowych, kryptologii czy przy wykrywaniu fal grawitacyjnych.
      Najważniejszą cechą tego systemu jest to, że działa on w temperaturze pokojowej, a mimo to wciąż pozwala na dobieranie parametrów z dziedziny mechaniki kwantowej. To całkowicie zmienia reguły gry, gdyż teraz będzie można wykorzystać taki system nie tylko w naszym laboratorium, które posiada wielkie systemy kriogeniczne, ale w laboratoriach na całym świecie, mówi profesor Nergis Mavalvala, dyrektor wydziału fizyki w MIT.
      Lasery emitują uporządkowany strumień fotonów. Jednak w tym uporządkowaniu fotony mają pewną swobodę. Przez to pojawiają się kwantowe fluktuacje, tworzące niepożądany szum. Na przykład liczba fotonów, które w danym momencie docierają do celu, nie jest stała, a zmienia się wokół pewnej średniej w sposób, który jest trudny do przewidzenia. Również czas dotarcia konkretnych fotonów do celu nie jest stały.
      Obie te wartości, liczba fotonów i czas ich dotarcia do celu, decydują o tym, na ile precyzyjne są pomiary dokonywane za pomocą lasera. A z zasady nieoznaczoności Heisenberga wynika, że nie jest możliwe jednoczesne zmierzenie pozycji (czasu) i pędu (liczby) fotonów.
      Naukowcy próbują radzić sobie z tym problemem poprzez tzw. kwantowe ściskanie. To teoretyczne założenie, że niepewność we właściwościach kwantowych lasera można przedstawić za pomocą teoretycznego okręgu. Idealny okrąg reprezentuje równą niepewność w stosunku do obu właściwości (czasu i liczby fotonów). Elipsa, czyli okrąg ściśnięty, oznacza, że dla jednej z właściwości niepewność jest mniejsza, dla drugiej większa.
      Jednym ze sposobów, w jaki naukowcy realizują kwantowe ściskanie są systemy optomechaniczne, które wykorzystują lustra poruszające się pod wpływem światła lasera. Odpowiednio dobierając właściwości takich systemów naukowcy są w stanie ustanowić korelację pomiędzy obiema właściwościami kwantowymi, a co za tym idzie, zmniejszyć niepewność pomiaru i zredukować szum kwantowy.
      Dotychczas optomechaniczne ściskanie wymagało wielkich instalacji i warunków kriogenicznych. Działo się tak, gdyż w temperaturze pokojowej energia termiczna otaczająca system mogła mieć wpływ na jego działanie i wprowadzała szum termiczny, który był silniejszy od szumu kwantowego, jaki próbowano redukować. Dlatego też takie systemy pracowały w temperaturze zaledwie 10 kelwinów (-263,15 stopni Celsjusza). Tam gdzie potrzebna jest kriogenika, nie ma mowy o niewielkim przenośnym systemie. Jeśli bowiem urządzenie może pracować tylko w wielkiej zamrażarce, to nie możesz go z niej wyjąć i uruchomić poza nią, wyjaśnia Mavalvala.
      Dlatego też zespół z MIT pracujący pod kierunkiem Nancy Aggarval, postanowił zbudować system optomechaczniczny z ruchomym lustrem wykonanym z materiałów, które absorbują minimalne ilości energii cieplnej po to, by nie trzeba było takiego systemu chłodzić. Uczeni stworzyli bardzo małe lustro o średnicy 70 mikrometrów. Zbudowano je z naprzemiennie ułożonych warstw arsenku galu i arsenku galowo-aluminowego. Oba te materiały mają wysoce uporządkowaną strukturę atomową, która zapobiega utratom ciepła. Materiały nieuporządkowane łatwo tracą energię, gdyż w ich strukturze znajduje się wiele miejsc, gdzie elektrony mogą się odbijać i zderzać. W bardziej uporządkowanych materiałach jest mniej takich miejsc, wyjaśnia Aggarwal.
      Wspomniane wielowarstwowe lustro zawieszono na wsporniku o długości 55 mikrometrów. Całości nadano taki kształt, by absorbowała jak najmniej energii termicznej. System przetestowano na Louisiana State University. Dzięki niemu naukowcy byli w stanie określić kwantowe fluktuacje liczby fotonów względem czasu ich przybycia do lustra. Pozwoliło im to na zredukowanie szumu o 15% i uzyskanie bardziej precyzyjnego „ściśniętego” promienia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktor inżynier Jacek Wilk-Jakubowski z Politechniki Świętokrzyskiej jest autorem innowacyjnej gaśnicy, która gasi pożar... falami dźwiękowymi. Jego urządzenie nie tylko tłumi ogień, ale ma i tę kolosalną zaletę, że nie niszczy otoczenia w takim stopniu jak gaśnice wodne czy pianowe. Ponadto jest tańsze w eksploatacji.
      Dźwiękowa gaśnica działa z odległości nienal 2 metrów i może być obsługiwana zdalnie. Człowiek nie musi więc znajdować się blisko ognia. Działanie gaśnicy polega na wykorzystaniu fali akustycznej, które zwiększa ruch powietrza na krawędzi płomieni. Tym samym zmniejsza się obszar, na którym następuje proces spalania, cząsteczki tlenu pod wpływem fali dźwiękowej zagęszczają się i rozrzedzają. W wyniku tego falującego ruchu odchylone płomienie rozrywają się na części i przestają na siebie oddziaływać, gdyż tlenu jest coraz mniej w miejscu, w którym zachodzi proces spalania. W efekcie, po zaledwie kilkunastu sekundach od uruchomienia urządzenia ogień udaje się ugasić, czytamy na stronach Politechniki Świętokrzyskiej.
      Ponadto w przeciwieństwie do tradycyjnych gaśnic, ta akustyczna może działać przez długi czas, gdyż nie występuje tutaj problem wyczerpania się środka gaśniczego, nie musi być cykliczne sprawdzania pod kątem występowania odpowiedniego ciśnienia. Mankamentem jest zaś konieczność zapewnienia źródła zasilania.
      Z eksperymentów przeprowadzonych przez doktora Wilka-Jakubowskiego wynika, że do gaszenia ognia najlepiej nadają się niskie dźwięki, znajdujące się na granicy słyszalności ludzkiego ucha. Wynalazca, we współpracy z Pawłem Stawczykiem i naukowcami z Uniwersytetu Technicznego w Bułgarii przeprowadził już pierwsze próby polowe prototypu. Gaśnica skutecznie tłumiła palące się ciecze i gazy.
      Naukowcy przeprowadzili już wstępne rozmowy z ekspertami ds. pożarnictwa. Wynika z nich, że nowatorska gaśnica najlepiej sprawdziłaby się jako wbudowany element systemu przeciwpożarowego budynku. Mogłaby w tej roli zastąpić tradycyjne spryskiwacze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W październiku ubiegłego roku informowaliśmy, że Dziewiąta Planeta, hipotetyczny nieznany dotychczas obiekt wchodzący w skład Układu Słonecznego, może nie być planetą. Astronomowie Jakub Scholtz z Durham University i James Unwin z University of Illinois at Chicago zaproponowali hipotezę mówiącą, że to... pierwotna czarna dziura. Teraz Edward Witten z Princeton University zauważa, że takiego obiektu nie można by wykryć za pomocą teleskopów, jednak stwierdza, że można by go zauważyć wysyłając w kierunku jego domniemanego położenia setki lub tysiące niewielkich sond.
      Propozycja Wittena to modyfikacja projektu Breakthrough Starshot. Jak pisaliśmy, autorzy tego projektu proponują wysłanie do Alfa Centauri pojazdu napędzanego żaglem słonecznym. Pojazd taki zostałyby rozpędzony za pomocą światła lasera do prędkości 20% prędkości światła i dotarłby do Alfa Centauri w ciągu 20 lat. Witten oblicza zaś, że wykorzystując podobny system można by wysłać w podróż większy pojazd – o wadze około 100 gramów – dzięki czemu nie byłaby potrzebna tak wielka miniaturyzacja jak w Breakthrough Starshot. Pojazd taki, poruszając się z prędkością 0,001 (300 km/s) c mógłby w ciągu 10 lat przebyć odległość 500 jednostek astronomicznych.
      Wysyłając całą flotę w stronę, gdzie powinna znajdować się hipotetyczna czarna dziura krążąca w Układzie Słonecznym może zdarzyć się tak, że kilka z tych sond przeleci w odległości nie większej niż kilkadziesiąt jednostek astronomicznych. Oddziaływanie dziury spowodowałoby, że sondy by przyspieszyły. Jeśli wysyłałyby one regularne sygnały na Ziemię, oddziaływanie grawitacyjne czarnej dziury spowodowałyby wydłużenie interwału pomiędzy impulsami.
      Witten oblicza, że do wykrycia w ten sposób czarnej dziury potrzeba by było sygnałów, których opóźnienie lub przyspieszenie byłoby mniejsze niż 10-5 sekundy na rok. Taką dokładność można bez przeszkód uzyskać za pomocą współczesnych zegarów atomowych. Jednak trudno wyobrazić sobie umieszczenie zegara atomowego w pojeździe ważącym zaledwie 100 gramów. Witten przyznaje, że jego propozycja jest bardziej teoretyczna niż praktyczna. Nie wiem, ani czy taki pomysł da się zrealizować, ani czy – gdyby było to możliwe to realizacji – jest to najlepszy sposób.
      Na artykuł Wittena zareagowali Scott Lawrence i Zeeve Rogoszinski z University of Maryland, którzy zaproponowali rozwiązanie bez potrzeby używania zegarów atomowych. Ich zdaniem obecność czarnaj dziury można by stwierdzić wykrywając zaburzenia trajektorii ruchu sond wywołane przez jej oddziaływanie grawitacyjne. W przeciwieństwie do pomysłu Wittena, gdzie różnice w sygnałach są powodowane przyspieszeniem próbników w pobliżu czarnej dziury, pomysł Lawrence'a i Rogoszinskiego ma i tę zaletę, że zaburzenia orbity próbników kumulowałyby się przez wiele lat.
      Co po latach sondy zboczyłyby z toru lotu o 1000 kilometrów. Co prawda znajdowałyby się wówczas w odległości 500 j.a. od Ziemi, jednak – jak wyliczają naukowcy – zaburzenia trajektorii można by wykryć za pomocą interferometrii bazowej wykorzystującej wysokie częstotliwości radiowe. Tutaj jednak pojawiaj się inny problem techniczny. Sondy musiałyby albo emitować taki sygnał, albo przynajmniej go odbijać.
      Jednak być może obie propozycje należy wyrzucić do kosza. Jak bowiem zauważają w swojej pracy Theim Haong z Koreańskiego Instytutu Astronomii i Badań Kosmosu oraz Abraham Loez z Uniwersytetu Harvarda, autorzy dwóch wspomnianych pomysłów potraktowali sondy jako obiekty podlegające jedynie grawitacji. Tymczasem opory i oddziaływania elektromagnetyczne w nierównomiernie rozłożonej materii międzygwiezdnej również wpływałyby na trajektorię i prędkość sond, przykrywając wszelki wpływ czarnej dziury.
      Mike Brown z Caltechu, który wraz z Konstantinem Batyginem wysunęli hipotezę o istnieniu Dziewiątej Planety mówi, że podobają mu się te propozycje. Jednak uważam, że nie ma żadnych podstaw, by sądzić, że Dziewiąta Planeta jest w rzeczywistości czarną dziurą. Wciąż jej szukamy. Jeśli nie znajdziemy jej za pomocą obecnie dostępnych narzędzi, co myślę, że szybko zostanie ona zauważona dzięki Vera C Rubin Observatory. Nie wiem jednak, kiedy to nastąpi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
      Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
      Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
      Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
      Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
      Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
      Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pierwszą w Polsce operację wszczepienia pionierskich, aktywnych implantów wykorzystujących przewodnictwo kostne dźwięku przeprowadzili specjaliści Światowego Centrum Słuchu w Kajetanach. To nowy etap w leczeniu zaburzeń słuchu występujących w obrębie ucha zewnętrznego i środkowego – twierdzi prof. Henryk Skarżyński.
      W informacji przekazanej PAP główny wykonawca zabiegu, prof. Skarżyński poinformował, że zastosowano urządzenie o nazwie BONEBRIDGE BCI 602 wykorzystujące zjawisko przewodnictwa kostnego. Polega ono na przekazywaniu sygnału dźwiękowego przez kości czaszki bezpośrednio do ucha wewnętrznego.
      Odbywa się to w ten sposób, że kości czaszki są stymulowane drganiami mechanicznymi. Drgania te kierowane są bezpośrednio do ucha wewnętrznego, gdzie następuje ich przetwarzanie podobnie jak w przypadku normalnie docierających dźwięków (pomijany jest odcinek między uchem zewnętrznym a środkowym).
      Nowy aparat, który to umożliwia, składa się z dwóch części: zewnętrznej, którą stanowi procesor mowy, oraz wewnętrznej, całkowicie schowanej pod skórą pacjenta.
      Prof. Skarżyński wyjaśnia, że system ten przeznaczony jest dla osób z trwałym ubytkiem słuchu po różnych operacjach ucha zewnętrznego i środkowego, a także z wadami rozwojowymi ucha zewnętrznego i środkowego oraz z głuchotą jednostronną. Mogą z niego korzystać również pacjenci z wrodzoną mikrocją i atrezją przewodu słuchowego zewnętrznego. Są to wady wrodzone polegające na całkowitym (anocja) lub częściowym (mikrocja) braku małżowin usznych.
      Nowe implanty mogą poprawić słuch pacjentom po wcześniej przeprowadzonych operacjach uszu, które nie dały oczekiwanego efektu lub nie można było wszczepić im innych urządzeń. Aparat ma niewielkie rozmiary, mogą z niego korzystać pacjenci z wadami anatomicznymi, takimi jak zbyt cienka kość, za mały wyrostek sutkowaty oraz innymi wrodzonymi deformacjami.
      To kolejny milowy krok w polskiej otochirurgii. Cieszę się, że te przełomowe operacje możemy wykonać w Światowym Centrum Słuchu w Kajetanach. Tworząc Centrum chciałem, aby jego działalność kliniczna nie tylko dawała wymierne korzyści polskim pacjentom, ale także upowszechniała współczesne światowe standardy medyczne – podkreśla prof. Skarżyński.
      Zabieg wszczepienia implantu – wyjaśnia specjalista - nie wymaga dalszych interwencji chirurgicznych, ponieważ wszystkie części podlegające wymianie znajdują się w zewnętrznym mikroprocesorze dźwięku. W części zewnętrznej znajdują się też zasilanie i elektronika, dzięki czemu możliwa jest ich wymiana po wielu latach użytkowania. System może być wciąż udoskonalany bez konieczności wykonania kolejnej operacji.
      Parametry pracy urządzenia ustawia się komputerowo w oparciu o wyniki diagnostyki audiologicznej i stosownie do indywidualnych potrzeb użytkownika. Technologia cyfrowa w procesorze pozwala tak go dopasować, by zapewnić użytkownikowi jak najlepsze rozumienie mowy oraz uzyskać możliwie naturalne brzmienie dźwięku w różnych sytuacjach akustycznych.

      « powrót do artykułu
×
×
  • Create New...