Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Teleskop Hubble'a zauważył cienki dysk materiału krążącego wokół czarnej dziury NGC 3147, która jest położona w odległości 130 milionów lat świetlnych od Ziemi. Problem w tym, że zgodnie z współczesnymi teoriami dysk taki nie ma prawa istnieć. Jego obecność tak blisko czarnej dziury to okazja do przetestowania teorii względności Einsteina. Teorie te opisują grawitację jako zagięcie przestrzeni oraz relacje pomiędzy czasem a przestrzenią.

Nigdy z taką dokładnością i to w świetle widzialnym nie obserwowaliśmy skutków opisywanych w ogólnej i szczególnej teorii względności, mówi Marco Chiaberge z Europejskiej Agencji Kosmicznej. Mamy niezwykłą okazję, by obserwować dysk materii znajdujący się bardzo blisko czarnej dziury. Tak blisko, że prędkości i intensywność grawitacji wpływają na wygląd fotonów. Bez odwołania się do teorii względności nie jesteśmy w stanie zrozumieć tego, co widzimy, dodaje główny autor badań, Stefano Bianchi z Universita degli Studi Roma Tre w Rzymie.

Czarne dziury w pewnych typach galaktyk, takich jak NGC 3147 są „niedożywione”, gdyż brak jest wokół nich wystarczająco dużo materii, która byłaby przez nie regularnie wchłaniana. Materia wokół takich czarnych dziur jest „napompowana”, przypomina kształtem oponę, a nie płaski dysk wokół potężnych „dobrze odżywionych” czarnych dziur. Tymczasem materia wokół NGC 3147 ma kształt płaskiego dysku.

Myśleliśmy, że ta czarna dziura będzie świetną kandydatką do potwierdzenia, że poniżej pewnej jasności dysk akrecyjny wokół obiektu przestaje istnieć. Jednak zaobserwowaliśmy coś, czego się nie spodziewaliśmy. Zauważyliśmy tam poruszający się gaz, którego właściwości można wyjaśnić tylko wtedy, gdy przyjmiemy, że mamy tam do czynienia z cienkim dyskiem materiału znajdującego się bardzo blisko czarnej dziury, mówi Ari Laor z Izraelskiego Instytutu Technologicznego Technion.

Obecne modele mówią, że dysk akrecyjny formuje się, gdy wielkie ilości gazu zostaną przechwycone przez pole grawitacyjne czarnej dziury. Przechwycona materia emituje bardzo dużo światła i powstaje kwazar. Gdy do dyskuk napływa coraz mniej materiału, zaczyna się on rozpadać, staje się mniej jasny i zmienia strukturę.

To, co zaobserwowaliśmy to pomniejszony kwazar. Nie sądziliśmy, że coś takiego istnieje. To taki sam dysk, jaki widzimy wokół obiektów o 1000 czy 100 000 razy jaśniejszych. Okazuje się zatem, że współczesne modele dynamiki gazów w słabo świecących aktywnych galaktykach są niewłaściwe, dodaje Bianchi.

Niezwykle cenną dla nauki cechą niespodziewanego odkrycia jest fakt, że pole grawitacyjne czarnej dziury oddziałuje na dysk tak silnie, iż modyfikuje właściwości jego światła, do daje unikatową okazję do przetestowania teorii względności.

Czarna dziura NGC 3147 ma masę około 250 milionów mas Słońca. Materiał krąży wokół niej z prędkością ponad 10% prędkości światła. Przy tych prędkościach wydaje się, że emitowane przezeń światło jest coraz jaśniejsze od strony, z której gaz zbliża się do Ziemi, a przygasa, gdy gaz się oddala. Obserwacje wykazały także, że gaz jest tak mocno powiązany z grawitacją czarnej dziury, iż światło ma problem by się zeń wydobyć, przez co wydaje się, że jest emitowane w czerwonym zakresie spektrum.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Tak właśnie jest, z tym, że źródłem znacznej części jej jasności jest dysk wokół centralnej BH.

Share this post


Link to post
Share on other sites
Posted (edited)
2 godziny temu, nkmarek napisał:

Ja myślałem, że kwazar to młoda aktywna galaktyka a nie czarna dziura.

Źródłem niezwykłej jasności jest BH. Galaktyki młode czy stare w większości zawierają dziurę w środku.

edit: drugi!

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Kwazary, aktywne jądra galaktyk (AGN), galaktyki Seyferta itd. to ten sam mechanizm (w różnej skali aktywności).

edit: :D

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Podobno nasza Droga Mleczna też kiedyś była kwazarem. Co się zmieniło ? Czarna dziura wyparowała czy ilość materii przez nią zagarnianej się zmniejszyła ?

Share this post


Link to post
Share on other sites

Podobno była, ale już zjadła swoje papu (właściwiej papu tak się rozsmarowało przy horyzoncie i uległo przesunięciu ku czerwieni, że już nic nie widzimy). Dalej jedna miota gwiazdami z pobliża zaznaczając, że jest i ma się dobrze.

Share this post


Link to post
Share on other sites

Czarna dziura to zaburzenie czasu. Zapominamy o tym że do czarnej dziury nic wpaść nie może,  bo na horyzoncie czarnej dziury czas się zatrzymuje (dla nas, obserwatorów z zewnątrz). Wygląda na to że po opuszczeniu mentalności: Geocentrycznej, tkwimy nadal w mentalności Czasocentrycznej (w sensie patrzenia z Naszego Czasu)

Hmmm... trzeba czekać kolejne tysiąc lat na to aby zmieniła się mentalność fizyków?

Pomyślmy szerzej niż tylko Czasocentrycznie. Energia świecenia materii znajdującej się w "swoim bardzo zwolnionym względem nas czasie" wysyłana do Naszego Czasu cechuje się niewyobrażalnym rozrzedzeniem. Jeden kwant promieniowania czarnej dziury przez sekundę (jedną sekundę jej czasu) rozciągany jest na miliardy lat naszego czasu. To dlatego czarne dziury są niewidoczne. Ten sposób spojrzenia na fizykę czasu i przestrzeni pozwala zrozumieć że czas i przestrzeń to jest dokładnie to samo!

Share this post


Link to post
Share on other sites
27 minut temu, Tomasz Winter napisał:

To dlatego czarne dziury są niewidoczne.

Jesteś za bardzo światłocentryczny. 

  • Like (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)
9 minut temu, Jajcenty napisał:

Jesteś za bardzo światłocentryczny. 

Być może, mam po prostu nieodparte wrażenie że taki spojrzenie jest kolejnym etapem rozwoju mentalnego. Niedobrze mi się robi gdy słucham że światło z gwiazdy odległej od nas 100 lat świetlnych leci do Ziemi 100 lat. Przecież to bzdura, światło dociera natychmiast, z jego punktu widzenia i w jego czasie. To dla nas mija 100 lat, dla fotonu nie mija nawet sekunda. Warto pomyśleć o tym czym jest faktycznie prędkość światła. W/g mnie to jest to najniższa prędkość we Wszechświecie. Ponieważ gdy t=0  to V=0   Nie można przekroczyć prędkości światła, bo gdy coś się zatrzymało to nie może zatrzymać się jeszcze bardziej. To bardzo intuicyjne widzenie fizyki i Wszechświata.

Edited by Tomasz Winter

Share this post


Link to post
Share on other sites
5 minut temu, Tomasz Winter napisał:

Warto pomyśleć o tym czym jest faktycznie prędkość światła. W/g mnie to jest to najniższa prędkość we Wszechświecie

Tak, znana jest mi (i większości osób tutaj) ta intuicja stałej sumy wektora (t,x,y,z). Nie wiem co jest warta, poczekam na wykładnię od jakigoś Wiedzącego. Ze swojej strony uważam, że to może być przesłanka skwantowania czasu i przestrzeni. Z jakiś przyczyn (?) w czasie Plancka Wszechświat musi się przesunąć o odległość Plancka i nie więcej niż o nią. To daje minV = c.

Share this post


Link to post
Share on other sites
2 godziny temu, Tomasz Winter napisał:

bo gdy coś się zatrzymało to nie może zatrzymać się jeszcze bardziej.

Może. Nawet kuń wie, że jak się zatrzyma, to może dać curik ;)

Share this post


Link to post
Share on other sites
Posted (edited)
13 godzin temu, Tomasz Winter napisał:

Jeden kwant promieniowania czarnej dziury przez sekundę (jedną sekundę jej czasu) rozciągany jest na miliardy lat naszego czasu.

O jakim "promieniowaniu BH" piszesz? Promieniowaniu Hawkinga, czy jakimś innym?
 

12 godzin temu, Jajcenty napisał:

Z jakiś przyczyn (?) w czasie Plancka Wszechświat musi się przesunąć o odległość Plancka i nie więcej niż o nią. To daje minV = c.

Te "Plancki" to raczej tylko umowna granica "naszej" fizyki.

Edited by ex nihilo

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Czarna dziura, która znajduje się w centrum naszej galaktyki, w ciągu zaledwie dwóch godzin zwiększyła swoją jasność 75-krotnie. Naukowcy sądzą, że Sagittarius A* była jeszcze jaśniejsza, nim zaczęli się jej przyglądać. Jeszcze nigdy w historii 20-letnich obserwacji nie zanotowano tak dużej jasności tej czarnej dziury. To jednocześnie największa zaobserwowana zmiana.
      Obserwacji dokonał Tuan Do z Keck Observatory. Początkowo sądził, że wyjątkowo jasny punkt, który pojawił się na odczytach to pobliska gwiazda S0-2, jednak szybko zdał sobie sprawę, że to co obserwuje, to rosnąca jasność czarnej dziury.
      To było dziwne. Nigdy wcześniej nie widziałem tak jasnej czarnej dziury. Może wpada w nią więcej gazu, przez co staje się bardziej jasna niż kiedyś?, zastanawia się uczony. W ubiegłym roku gwiazda S0-2 wędrowała w pobliżu Sagittariusa A*, co mogło zaburzyć gaz znajdujący się w okolicy i spowodowało, że więcej go trafia do dziury, a być może zwiększanie jasności jest związane z tajemniczą chmurą gazu i pyłu zwaną G2, którą zaobserwowano w 2014 roku. Już wówczas spodziewano się zwiększenia aktywności i fajerwerków, ale nic takiego nie nastąpiło. Astronomowie byli wówczas rozczarowani. Być może, jak mówi Do, coś opóźniło tę chmurę.
      Sagittarius A* ma wkrótce zostać zobrazowana przez Event Horizon Telescope. W kwietniu wykonał on pierwsze w historii ludzkości zdjęcie czarnej dziury. Była to M87. Gdy w końcu zobaczymy dokładniejszy obraz centralnej dziury Drogi Mlecznej będziemy mogli o niej więcej powiedzieć.
      Oczywiście obserwowane światło, które zwiększyło jasność, nie pochodzi z samej czarnej dziury, a z towarzyszącego jej dysku akrecyjnego. To dysk materii krążącej wokół czarnej dziury, który jest podgrzewany wskutek jej oddziaływania i zaczyna emitować promieniowanie elektromagnetyczne. To właśnie nagłe zwiększenie jego jasności zaobserwował Do.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po roku przerwy, w czasie którego był rozbudowywany, wykrywacz fal grawitacyjnych LIGO ponownie rozpoczyna pracę. Dzisiaj, 1 kwietnia, uruchomione zostaną detektory w stanach Waszyngton i Luizjana. Tym razem w pracy będzie je wspierał włoski detektor Virgo, a za kilka miesięcy do współpracy może dołączyć japoński KAGRA.
      Naukowcy mają nadzieję, że udoskonalony LIGO ściśle współpracujący z innymi wykrywaczami zarejestruje więcej fal grawitacyjnych i będzie w stanie bardziej precyzyjnie wyśledzić ich pochodzenie. Większość prac ulepszających polegało na zwiększeniu mocy wykorzystywanego lasera. To zwiększyło czułość, mówi profesor Jolien Creighton z University of Wisconsin Milwaukee.
      Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 10^21, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton.
      W ramach rozbudowy przybliżono się też do fizycznych granic czułości LIGO, które są wyznaczane przez zasadę nieoznaczoności. Czułość wykrywacza zwiększono „kwantowo ściskając” światło lasera. Dzięki temu długość tuneli można mierzyć z jeszcze większą dokładnością. Dodanie do detektorów z Waszyngtonu i Luizjany urządzeń z Włoch i Japonii pozwoli na bardziej precyzyjną triangulację danych i lepsze określenie źródła pochodzenia sygnału.
      Profesor Creighton mówi, że LIGO będzie przyglądał się takim samym źródłom sygnału, co wcześniej: zderzeniom czarnych dziur, gwiazd neutronowych lub kombinacji obu. Uczony jest pewien, że teraz wykrywanych będzie więcej zderzeń czarnych dziur. Mamy też nadzieję, że zobaczymy kolizję układu podwójnego gwiazd neutronowych oraz czarnej dziury, stwierdza. Jednak, jako że dotychczas takiego zjawiska nie zaobserwowano, trudno jest mówić, jak często ono występuje. Jednak po udoskonaleniu LIGO zajrzy jeszcze głębiej w przestrzeń kosmiczną, więc powinniśmy zaobserwować nawet rzadkie wydarzenia, mówi Creighton.
      LIGO może też obserwować wybuchy supernowych oraz szybko obracające się samotne gwiazdy neutronowe. Jeśli taki obrót nie jest perfekcyjnie symetryczny, to powinny powstawać fale grawitacyjne, wyjaśnia Creighton. Taki sygnał będzie słaby, ale stały, więc im dłużej LIGO będzie pracował, tym większa szansa na jego zarejestrowanie.
      Specjaliści spodziewają się również, że fale grawitacyjne mogą nieść ze sobą niezwykle subtelne echa Wielkiego Wybuchu i mają nadzieję, że uda się je wykryć. Zawsze jest nadzieja, że zobaczymy coś niespodziewanego. I są rzeczy, których nie potrafimy do końca przewidzieć, dodaje Creighton.
      LIGO będzie pracował przez rok. Później ponownie zostanie wyłączony i znacząco udoskonalony w ramach projektu ALIGO+.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańskie i brytyjskie instytucje ogłosiły, że wykrywacz fal grawitacyjnych LIGO (Laser Interferometer Gravitational-Wave Observatory), zostanie znacząco udoskonalony. Amerykańska Narodowa Fundacja Nauki przeznaczy na projekt Advanced LIGO Plus (ALIGO+) 20,4 miliona USD, a UK Research dołoży kolejnych 13,7 miliona dolarów. Niewielki wkład finansowy będzie miała też Australia.
      Rozbudowa będzie dotyczyła obu miejsc, w których znajduje się LIGO, w stanach Waszyngton i Luizjana. W jej ramach urządzenie wzbogaci się m.in. w 300-metrowej długości komorę próżniową, która pozwoli manipulować właściwościami laserów wykorzystywanych w wykrywaczu oraz zmniejszyć poziom zakłóceń z tła.
      LIGO składa się z dwóch interferometrów w kształcie litery L. Jeden z nich znajduje się w Hanford w stanie Waszyngton, drugi zaś w Livingston z Luizjanie. Oba interferometry mają po 4 kilometry długości. LIGO pracowało w latach 2002–2010, następnie zostało zamknięte na czas rozbudowy i ponownie ruszyło w roku 2015. Wkrótce po tym dokonało odkrycia fal grawitacyjnych. Od tamtego czasu obserwatorium przechodziło mniejsze rozbudowy, dzięki którym jego czułość zwiększono o około 50%. Dotychczas LIGO zaobserwowało 10 połączeń czarnych dziur i jedno połączenie gwiazd neutronowych. Wynikiem tych zdarzeń było pojawienie się fal grawitacyjnych.
      ALIGO+ będzie jednak znacznie doskonalszym instrumentem niż dotychczas. Po rozbudowie LIGO będzie w stanie wykrywać połączenia gwiazd neutronowych z odległości 325 megaparseków, czyli około miliarda lat świetlnych od Ziemi. To znaczna różnica, gdyż zanim rozpocznie się ALIGO+ urządzenie nadal będzie udoskonalane, a bezpośrednio przed ALIGO+ osiągnie czułość pozwalającą na wykrywanie połączeń gwiazd neutronowych z odległości 173 megaparseków.
      Obecnie LIGO może wykrywać połączenia czarnych dziur z odległości miliardów parseków. Do roku 2022 urządzenie powinno rejestrować jedno takie wydarzenie dziennie. Po ALIGO+ będzie rejestrowało je co kilka godzin.
      Rozbudowa zwiększy nie tylko częstotliwość, ale i jakość obserwacji. Na przykład dzięki redukcji poziomu szumów naukowcy będą w stanie określić, jak czarna dziury obracały się przed połączeniem. Obecnie takich obserwacji nie jesteśmy w stanie wykonywać.
      Zasada działania LIGO jest dość prosta. Na obu końcach tuneli w kształcie litery L znajdują się lustra. W punkcie centralnym tuneli mamy laser, który wysyła wiązki w kierunku luster. Wiązki odbijają się, wracają do punktu centralnego, gdzie nakładają się na siebie niwelując wzajemnie swoje oscylacje. Jeśli jednak pojawi się fala grawitacyjna, która zaburza czasoprzestrzeń, zmienia się długość tuneli, dochodzi do zmiany częstotliwości wiązek i interferencji pomiędzy nimi. Tę właśnie interferencję można wykryć.
      W praktyce jednak lustra w interferometrze nie są całkowicie wolne od wpływów zewnętrznych. Co więcej, także lasery wytwarzają zakłócenia. Stopniowe udoskonalenia LIGO służą m.in. ich eliminacji. Komora próżniowa, która zostanie dodana w ramach ALIGO+ pozwoli na zredukowanie ciśnienia wywieranego na lustra oraz zmniejszenie fluktuacji fotonów. Ponadto lustra zyskają nową powłokę, która powinna czterokrotnie zmniejszyć szum termiczny.
      Pierwsze prace prowadzone w ramach ALIGO+ powinny ruszyć około 2023 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krowa, niezwykle jasne światło na niebie, wciąż dzieli naukowców, którzy nie wiedzą, jaka jest natura tajemniczego zjawiska.
      Obiekt AT2018cow, nazwany nieoficjalnie Krową (Cow) został po raz pierwszy zaobserwowany 16 czerwca 2018 roku. Pojawił się nagle i znikąd w niewielkiej galaktyce odległej o około 200 milionów lat świetlnych. Krowa jest bardzo jasna, a jej gwałtowne pojawienie się świadczy o tym, że nie jest to supernowa, gdyż te wolniej zyskują na jasności.
      Początkowo sądzono, że Krowa znajduje się znacznie bliżej, niewykluczone, że w Drodze Mlecznej. Pojawiły się przypuszczenia, że mamy do czynienia z białym karłem, który pochłania materiał pobliskiej gwiazdy i okresowo rozbłyska. Takie wydarzenia są częste w naszej galaktyce. Jednak analiza spektrum światła Krowy wykazała, że znajduje się ona znacznie dalej, w innej galaktyce, i to w odległości, z której rozbłyskujący biały karzeł nie byłby widoczny.
      Już pierwsze obserwacje pokazały, jak bardzo niezwykły jest to obiekt. Brak mu cech charakterystycznych supernowej. Ponadto zyskiwał na jasności i pozostał bardzo jasnym przez niemal 3 tygodnie. Supernowe zwykle się tak nie zachowują, mówi Daniel Perley, astronom z Liverpool John Moores University.
      Gdy tylko odkryto, w jakiej odległości leży Krowa, Liliana Rivera Sandoval z Texas Tech University postarała się o dostęp do należącego do NASA Neil Gehrels Swift Observatory, by zobaczyć, jak obiekt wygląda w ultrafiolecie i promieniach rentgenowskich. Okazało się, że emisja w obu zakresach jest bardzo jasna. Ponadto, chociaż jasność promieniowania rentgenowskiego początkowo się zmieniała, to jego spektrum nie ulegało zmianie, nie ewoluowało, co jest czymś niezwykłym, stwierdziła Sandoval. Po 3 tygodniach zakres zmian promieniowania X zwiększył się i spadła też jego jasność.
      Naukowcy zgadzają się, że długotrwałość tego wydarzenia wskazuje, że po początkowym rozbłysku coś je napędzało. Nie wiadomo jednak co. Niektórzy uważają, że mogła być to niezwykła supernowa, której jądro zapadło się już po eksplozji. Zdaniem innych, byliśmy świadkami rozerwania gwiazdy przez czarną dziurę Jednak takie wydarzenie zwykle wymaga obecności supermasywnej czarnej dziury, takiej, jakie znajdują się w centrach galaktyk, tymczasem Krowa pojawiła się w ramieniu galaktyki spiralnej. Część uczonych stwierdziła więc, że znajduje się tam średnio masywna czarna dziura. Jednak brak jednoznacznych dowodów na istnienie takich dziur. Każda z hipotez ma swoje słabe strony, przyznaje Sandoval.
      Jakby jeszcze tych tajemnic było mało, warto wspomnieć o obserwacjach przeprowadzonych przez Annę Ho z California Institute of Technology. Pani Ho użyła Submilimeter Array na Mauna Kea. Obiektów eksplodujących zwykle nie obserwuje się w zakresie fal milimetrowych, gdyż fale zanikają krótko po eksplozji i zwykle nie udaj się ich uchwycić. Tym razem było inaczej. Po kilkunastu dniach Krowa nadal jasno świeciła w tym zakresie. Po raz pierwszy udało mi się zaobserwować takie fale z takiego źródła, mówi Ho. Podobnie do innych zakresów, Krowa długo świeciła w spektrum milimetrowym, a później emisja zaczęła zanikać. Ho uważa, że emisja pochodziła z fali uderzeniowej wywołanej przez obiekt eksplodujący w otoczeniu pyłu i gazu. Nagły spadek emisji był spowodowany wyjściem fali poza granicę gazu i pyłu.
      Naukowcy nie potrafią więc jednoznaczne wyjaśńić, czym była Krowa. Mają więc nadzieję, że trafią na więcej takich zdarzeń, dzięki czemu uda się je zbadać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nigdy bym się nie spodziewał, że w jakikolwiek sposób przyczynimy się do badania ciemnej materii. To niesamowite, stwierdził Alan Cummings, który od 1973 roku pracuje przy misji Voyager 1. Dane z Voyagera 1 wykluczyły właśnie jedną z hipotez dotyczących natury ciemnej materii.
      Hipoteza ta mówi, że ciemna materia może składać się z czarnych dziur. Czarne dziury powstają wskutek zapadnięcia się gwiazd. Jednak, jako że masa ciemnej materii jest 6-krotnie większa od materii widocznej, w dziejach wszechświata nie mogło być aż tyle gwiazd, które by utworzyły czarne dziury tworzące ciemną materię. Dlatego też, jak mówi wspomniana hipoteza, ciemna materia składa się z czarnych dziur, które powstały wskutek zapadania się fluktuacji w pierwotnej materii powstałej wskutek Wielkiego Wybuchu, jeszcze zanim pojawiły się pierwsze gwiazdy.
      Jak mówi kosmolog Bernard Carr z Queen Mary University of London, który pracuje nad tą hipotezą od 40 lat, obliczenia doprowadziły do wniosku, że takie pierwotne czarne dziury mogą mieć jedną z trzech mas. Albo ich masa wynosi od 1 do 10 mas Słońca, albo jedną miliardową mas Słońca, albo mniej niż jedną biliardową mas Słońca, czyli około 10 miliardów ton. Czarna dziura o najmniejszej ze wspomnianych mas miałaby średnicę jądra atomu.
      Jednak, jak zauważają autorzy najnowszych badań, Mathieu Boudaud i Marco Cirelli z Sorbony, najmniejsze z tych dziur emitowałyby promieniowanie (promieniowanie Hawkinga), które Voyager 1 powinien zarejestrować. Urządzenia na Ziemi go nie rejestrują, gdyż składa się ono z cząstek o niskiej energii, które są odbijane przez pole magnetyczne Słońca. Jednak tam, gdzie obecnie znajduje się Voyager 1 powinno być ono widoczne dla instrumentów sondy.
      Faktem jest, że od roku 2012, kiedy to Voyager 1 opuścił heliosferę, jego urządzenia rejestrują niewielki stały przepływ pozytonów i elektronów. Jeśli jednak nawet pochodzą one z niewielkich czarnych dziur, to dziur takich jest zbyt mało, by stanowiły więcej niż 1% ciemnej materii w Drodze mlecznej, wyliczyli Boudaud i Cirelli. Cummings stwierdza, że spektrum energetyczne tych cząstek wskazuje, że pochodzą one z innego źródła, jak np. wybuchów supernowych.
      Praca Boudauda i Cirellego wyklucza więc ze wspomnianej hipotezy czarne dziury o najmniejszej masie, przyznaje Carr. Uczony dodaje, że jego faworytami zawsze były czarne dziury o kilku masach Słońca. Voyager 1 nie jest w stanie ich zarejestrować. Są one bowiem na tyle zimne i masywne, że z ich istnieniem nie jest związana emisja elektronów i pozytonów. Mogą one emitować jedynie niezwykle słabe światło.

      « powrót do artykułu
×
×
  • Create New...