Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Hubble zaobserwował dziwną czarną dziurę

Recommended Posts

Teleskop Hubble'a zauważył cienki dysk materiału krążącego wokół czarnej dziury NGC 3147, która jest położona w odległości 130 milionów lat świetlnych od Ziemi. Problem w tym, że zgodnie z współczesnymi teoriami dysk taki nie ma prawa istnieć. Jego obecność tak blisko czarnej dziury to okazja do przetestowania teorii względności Einsteina. Teorie te opisują grawitację jako zagięcie przestrzeni oraz relacje pomiędzy czasem a przestrzenią.

Nigdy z taką dokładnością i to w świetle widzialnym nie obserwowaliśmy skutków opisywanych w ogólnej i szczególnej teorii względności, mówi Marco Chiaberge z Europejskiej Agencji Kosmicznej. Mamy niezwykłą okazję, by obserwować dysk materii znajdujący się bardzo blisko czarnej dziury. Tak blisko, że prędkości i intensywność grawitacji wpływają na wygląd fotonów. Bez odwołania się do teorii względności nie jesteśmy w stanie zrozumieć tego, co widzimy, dodaje główny autor badań, Stefano Bianchi z Universita degli Studi Roma Tre w Rzymie.

Czarne dziury w pewnych typach galaktyk, takich jak NGC 3147 są „niedożywione”, gdyż brak jest wokół nich wystarczająco dużo materii, która byłaby przez nie regularnie wchłaniana. Materia wokół takich czarnych dziur jest „napompowana”, przypomina kształtem oponę, a nie płaski dysk wokół potężnych „dobrze odżywionych” czarnych dziur. Tymczasem materia wokół NGC 3147 ma kształt płaskiego dysku.

Myśleliśmy, że ta czarna dziura będzie świetną kandydatką do potwierdzenia, że poniżej pewnej jasności dysk akrecyjny wokół obiektu przestaje istnieć. Jednak zaobserwowaliśmy coś, czego się nie spodziewaliśmy. Zauważyliśmy tam poruszający się gaz, którego właściwości można wyjaśnić tylko wtedy, gdy przyjmiemy, że mamy tam do czynienia z cienkim dyskiem materiału znajdującego się bardzo blisko czarnej dziury, mówi Ari Laor z Izraelskiego Instytutu Technologicznego Technion.

Obecne modele mówią, że dysk akrecyjny formuje się, gdy wielkie ilości gazu zostaną przechwycone przez pole grawitacyjne czarnej dziury. Przechwycona materia emituje bardzo dużo światła i powstaje kwazar. Gdy do dyskuk napływa coraz mniej materiału, zaczyna się on rozpadać, staje się mniej jasny i zmienia strukturę.

To, co zaobserwowaliśmy to pomniejszony kwazar. Nie sądziliśmy, że coś takiego istnieje. To taki sam dysk, jaki widzimy wokół obiektów o 1000 czy 100 000 razy jaśniejszych. Okazuje się zatem, że współczesne modele dynamiki gazów w słabo świecących aktywnych galaktykach są niewłaściwe, dodaje Bianchi.

Niezwykle cenną dla nauki cechą niespodziewanego odkrycia jest fakt, że pole grawitacyjne czarnej dziury oddziałuje na dysk tak silnie, iż modyfikuje właściwości jego światła, do daje unikatową okazję do przetestowania teorii względności.

Czarna dziura NGC 3147 ma masę około 250 milionów mas Słońca. Materiał krąży wokół niej z prędkością ponad 10% prędkości światła. Przy tych prędkościach wydaje się, że emitowane przezeń światło jest coraz jaśniejsze od strony, z której gaz zbliża się do Ziemi, a przygasa, gdy gaz się oddala. Obserwacje wykazały także, że gaz jest tak mocno powiązany z grawitacją czarnej dziury, iż światło ma problem by się zeń wydobyć, przez co wydaje się, że jest emitowane w czerwonym zakresie spektrum.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Tak właśnie jest, z tym, że źródłem znacznej części jej jasności jest dysk wokół centralnej BH.

Share this post


Link to post
Share on other sites
2 godziny temu, nkmarek napisał:

Ja myślałem, że kwazar to młoda aktywna galaktyka a nie czarna dziura.

Źródłem niezwykłej jasności jest BH. Galaktyki młode czy stare w większości zawierają dziurę w środku.

edit: drugi!

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Kwazary, aktywne jądra galaktyk (AGN), galaktyki Seyferta itd. to ten sam mechanizm (w różnej skali aktywności).

edit: :D

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Podobno nasza Droga Mleczna też kiedyś była kwazarem. Co się zmieniło ? Czarna dziura wyparowała czy ilość materii przez nią zagarnianej się zmniejszyła ?

Share this post


Link to post
Share on other sites

Podobno była, ale już zjadła swoje papu (właściwiej papu tak się rozsmarowało przy horyzoncie i uległo przesunięciu ku czerwieni, że już nic nie widzimy). Dalej jedna miota gwiazdami z pobliża zaznaczając, że jest i ma się dobrze.

Share this post


Link to post
Share on other sites

Czarna dziura to zaburzenie czasu. Zapominamy o tym że do czarnej dziury nic wpaść nie może,  bo na horyzoncie czarnej dziury czas się zatrzymuje (dla nas, obserwatorów z zewnątrz). Wygląda na to że po opuszczeniu mentalności: Geocentrycznej, tkwimy nadal w mentalności Czasocentrycznej (w sensie patrzenia z Naszego Czasu)

Hmmm... trzeba czekać kolejne tysiąc lat na to aby zmieniła się mentalność fizyków?

Pomyślmy szerzej niż tylko Czasocentrycznie. Energia świecenia materii znajdującej się w "swoim bardzo zwolnionym względem nas czasie" wysyłana do Naszego Czasu cechuje się niewyobrażalnym rozrzedzeniem. Jeden kwant promieniowania czarnej dziury przez sekundę (jedną sekundę jej czasu) rozciągany jest na miliardy lat naszego czasu. To dlatego czarne dziury są niewidoczne. Ten sposób spojrzenia na fizykę czasu i przestrzeni pozwala zrozumieć że czas i przestrzeń to jest dokładnie to samo!

Share this post


Link to post
Share on other sites
27 minut temu, Tomasz Winter napisał:

To dlatego czarne dziury są niewidoczne.

Jesteś za bardzo światłocentryczny. 

  • Like (+1) 1

Share this post


Link to post
Share on other sites
9 minut temu, Jajcenty napisał:

Jesteś za bardzo światłocentryczny. 

Być może, mam po prostu nieodparte wrażenie że taki spojrzenie jest kolejnym etapem rozwoju mentalnego. Niedobrze mi się robi gdy słucham że światło z gwiazdy odległej od nas 100 lat świetlnych leci do Ziemi 100 lat. Przecież to bzdura, światło dociera natychmiast, z jego punktu widzenia i w jego czasie. To dla nas mija 100 lat, dla fotonu nie mija nawet sekunda. Warto pomyśleć o tym czym jest faktycznie prędkość światła. W/g mnie to jest to najniższa prędkość we Wszechświecie. Ponieważ gdy t=0  to V=0   Nie można przekroczyć prędkości światła, bo gdy coś się zatrzymało to nie może zatrzymać się jeszcze bardziej. To bardzo intuicyjne widzenie fizyki i Wszechświata.

Edited by Tomasz Winter

Share this post


Link to post
Share on other sites
5 minut temu, Tomasz Winter napisał:

Warto pomyśleć o tym czym jest faktycznie prędkość światła. W/g mnie to jest to najniższa prędkość we Wszechświecie

Tak, znana jest mi (i większości osób tutaj) ta intuicja stałej sumy wektora (t,x,y,z). Nie wiem co jest warta, poczekam na wykładnię od jakigoś Wiedzącego. Ze swojej strony uważam, że to może być przesłanka skwantowania czasu i przestrzeni. Z jakiś przyczyn (?) w czasie Plancka Wszechświat musi się przesunąć o odległość Plancka i nie więcej niż o nią. To daje minV = c.

Share this post


Link to post
Share on other sites
2 godziny temu, Tomasz Winter napisał:

bo gdy coś się zatrzymało to nie może zatrzymać się jeszcze bardziej.

Może. Nawet kuń wie, że jak się zatrzyma, to może dać curik ;)

Share this post


Link to post
Share on other sites
13 godzin temu, Tomasz Winter napisał:

Jeden kwant promieniowania czarnej dziury przez sekundę (jedną sekundę jej czasu) rozciągany jest na miliardy lat naszego czasu.

O jakim "promieniowaniu BH" piszesz? Promieniowaniu Hawkinga, czy jakimś innym?
 

12 godzin temu, Jajcenty napisał:

Z jakiś przyczyn (?) w czasie Plancka Wszechświat musi się przesunąć o odległość Plancka i nie więcej niż o nią. To daje minV = c.

Te "Plancki" to raczej tylko umowna granica "naszej" fizyki.

Edited by ex nihilo

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Czarnych dziur nie możemy bezpośrednio obserwować. Widzimy jednak gaz i pył, które świecą, gdy są przez nie wchłaniane. Wciągana do czarnej dziury materia wiruje na podobieństwo wody wpływającej do dziury, a nad i pod dziurą pojawia się tzw. korona, zbudowana z jasno świecącego ultragorącego gazu. Przed dwoma laty astronomowie ze zdumieniem zaobserwowali, że korona czarnej dziury w galaktyce 1ES 1927+654 szybko zniknęła, a później równie szybko jest pojawiła.
      Korony czarnych dziur mogą zmieniać jasność nawet 100-krotnie. Jednak w naszym przypadku doszło do bezprecedensowego wydarzenia. W ciągu zaledwie 40 dni jasność korony zmniejszyła się 10 000 razy. Niemal natychmiast korona zaczęła świecić coraz mocniej i po kolejnych 100 dniach jej blask był 20-krotniej silniejszy niż przed przygasaniem.
      Jako, że blask korony jest bezpośrednio związany z materią wchłanianą przez czarną dziurę, zaobserwowane zjawisko świadczyło o tym, że źródło materii zostało odcięte. Jednak co mogło być przyczyną tak spektakularnego wydarzenia?
      Międzynarodowy zespół astronomów z Izraela, USA, Wielkiej Brytanii, Chin, Kanady i Chile uważa, że przyczyną czasowego zniszczenia korony była zabłąkana gwiazda. Znalazła się ona zbyt blisko czarnej dziury i została rozerwana przez siły pływowe. Jej szybko poruszające się szczątki mogły spaść na dysk gazu otaczającego dziurę i chwilowo go rozproszyć.
      Zwykle nie obserwujemy tak dużych zmian w dysku akrecyjnym czarnej dziury, mówi główny autor badań, profesor Claudio Ricci z chilijskiego Uniwersytetu im. Diego Portalesa. To było tak dziwne, że początkowo sądziliśmy, iż coś jest nie tak z naszymi danymi. Gdy stwierdziliśmy, że są one prawidłowe, poczuliśmy dużą ekscytację. Nie mieliśmy jednak pojęcia, z czym mamy do czynienie. NIkt, z kim rozmawialiśmy, nie obserwował wcześniej takiego zjawiska.
      Hipotezę o rozerwanej gwieździe wzmacnia fakt, że kilka miesięcy przed zniknięciem korony zauważono, że dysk akrecyjny badanej czarnej dziury nagle pojaśniał w paśmie widzialnym. Być może był to wynik pierwszego zderzenia z resztkami gwiazdy.
      Najnowsze odkrycie jest również o tyle cenne, że naukowcy mogli całe zjawisko obserwować w czasie rzeczywistym. Oczywiście uwzględniając fakt, że galaktyka 1ES 1927+654 znajduje się w odległości 300 milionów lat świetlnych od Ziemi. Kiedy bowiem obserwatoria doniosły o pojaśnieniu dysku akrecyjnego zespół Ricciego zaczął obserwować czarną dziurę za pomocą kilku narzędzi. Wykorzystano teleskop NICER znajdujący się na Międzynarodowej Stacji Kosmicznej, Neil Gehrels Swift Observatory, NuSTAR oraz XMM-Newton. Wszystkie one zapewniały ciągły napływ danych przez wiele miesięcy, co pozwoliło na obserwowanie zniknięcia i pojawienia się korony.
      Autorzy badań nie wykluczają, że mogą istnieć inne wyjaśnienia obserwowanego zjawiska. Podkreślają, że jedną z wyróżniających się cech tego, co obserwowali był fakt, że spadek jasności korony nie był liniowy. Zmiany zachodziły w różnym tempie, czasami jasność korony spadała 100-krotnie w czasie zaledwie 8 godzin. Wiadomo, że korony czarnych dziur mogą tak bardzo zmieniać jasność, jednak w znacznie dłuższym czasie. Tak dramatyczne skoki, do których dochodziło całymi miesiącami, to coś niezwykłego.
      Te dane wciąż stanowią zagadkę. Ale to niezwykle ekscytujące, gdyż oznacza, że uczymy się czegoś nowego o wszechświecie. Sądzimy, że hipoteza o gwieździe jest dobra, ale wiemy, że jeszcze przez długi czas będziemy to analizowali, mówi współautor badań profesor Erin Kara z MIT.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy korzystający z Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego poinformowali o... zniknięciu masywnej niestabilnej gwiazdy znajdującej się w jednej z galaktyk karłowatych. Naukowcy sądzą, że gwiazda stała się mniej jasna i przesłonił ją pył. Inna możliwa interpretacja jest taka, zapadła się tworząc czarną dziurę, bez stworzenia supernowej. Jeśli się to potwierdzi, będzie to pierwsza bezpośrednia obserwacja tak dużej gwiazdy kończącej życie w taki sposób, mówi doktorant Andrew Allan z Trinity College Dublin.
      W latach 2001–2011 różne grupy astronomów obserwowały w Galaktyce Kinman niezwykłą masywną gwiazdę. Wielokrotne obserwacje potwierdziły, że znajduje się ona na ostatnich etapach ewolucji. Allan i prowadzony przez niego międzynarodowy zespół naukowy z Irlandii, Chile i USA chcieli więcej dowiedzieć się o życiu masywnych gwiazd. Gdy jednak w 2019 roku skierowali VLT na gwiazdę, tej nie było tam, gdzie spodziewali się ją znaleźć.
      Galaktyka karłowata Kinman znajduje się w odległości około 75 milionów lat świetlnych od Ziemi w Konstelacji Wodnika. To zbyt duża odległość, by można było obserwować pojedyncze gwiazdy. Jednak możliwe jest odkrycie sygnatur niektórych z nich. Przez 10 lat kolejni astronomowie widzieli dowody, że znajduje się w niej gwiazda zmienna typu S Doradus. Tego typu gwiazdy są bardzo niestabilne, są ostatnim etapem życia gwiazd, których początkowa masa jest co najmniej 85 razy większa od masy Słońca. Żyją krótko i są niezwykle jasne. Gwiazda z Kinmana była 2,5 miliona razy jaśniejsza od Słońca.
      Allan i jego zespół stwierdzili, że gwiazda zniknęła. Byłoby czymś niezwykłym, gdyby tak masywna gwiazda zniknęła i nie pozostałaby po niej jasna supernowa, przyznaje Allan. Naukowcy zaczęli szukać gwiazdy. Wykorzystali w tym celu VLT oraz spektrograf ESPRESSO. Nic nie znaleźli. Użyli również instrumentu X-shooter. I dalej nic. Następnie zabrali się za analizę wieloletnich danych pochodzących z różnych źródeł.
      Dane pokazały, że w Galaktyce Kinman doszło do okresu intensywnych rozbłysków, które zakończyły się po roku 2011. Wiadomo, że gwiazdy zmienne typu S Doradus mogą pod sam koniec życia doświadczać silnych rozbłysków i znacznej utraty masy, a po tym procesie ich jasność dramatycznie spada.
      Naukowcy proponują dwa wyjaśnienia tego zjawiska oraz braku supernowej. Według pierwszego scenariusza po serii rozbłysków i utracie masy gwiazda znacznie straciła na jasności i może być częściowo przesłonięta pyłem. Drugie wyjaśnienie mówi o zapadnięciu się gwiazdy i powstaniu czarnej dziury. To byłoby niezwykłe, gdyż zgodnie z obowiązującymi obecnie teoriami, większość masywnych gwiazd kończy życie jako supernowa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niezwykły sygnał, zauważony w falach grawitacyjnych, rzuca nowe światło na „lukę masy” pomiędzy gwiazdami neutronowymi, a czarnymi dziurami. Naukowcy od kilkudziesięciu lat nie wiedzą, czy i co znajduje się pomiędzy tymi obiektami. Teraz mają dowód, że coś tam jest.
      Gdy najbardziej masywne gwiazdy kończą życie, zapadają się pod wpływem własnej grawitacji i powstaje czarna dziura. Gdy jednak umierająca gwiazda jest mniej masywna, wybucha jako supernowa i pozostaje po niej gęste jądro – gwiazda neutronowa.
      Od dziesięcioleci wiemy, że najbardziej masywne gwiazdy neutronowe mają masę nie większą niż 2,5 masy Słońca, a najmniej masywne czarne dziury charakteryzują się masą około 5 mas Słońca. Powstaje więc pytanie, co jest pomiędzy tymi masami.
      W ubiegłym roku informowaliśmy, że wykrywacz fal grawitacyjnych LIGO, zarejestrował wszystko, czego od niego oczekiwano: zderzenie dwóch czarnych dziur, zderzenie dwóch gwiazd neutronowych oraz wchłonięcie gwiazdy neutronowej przez czarną dziurę. I właśnie to ostatnie wydarzenie, do którego doszło około 800 milionów lat temu, może rzucić nieco światła na „lukę masy”.
      Jak bowiem czytamy na łamach najnowszego numeru The Astrophysical Journal Letters, zarejestrowany sygnał, oznaczony jako GW190814, pochodził z połączenia czarnej dziury o masie 23 mas Słońca (22,2–24,3 M☉) z obiektem o masie 2,6 mas Słońca (2,50–2,67 M⊙). W wyniku tego procesu powstały fale grawitacyjne, które 800 milionów lat później zarejestrowaliśmy na Ziemi.
      Różnica mas pomiędzy obiektami, wynosząca aż 9:1 jest największą różnicą zaobserwowaną dotychczas podczas badania fal grawitacyjnych. Jednak najbardziej interesująca jest masa lżejszego z obiektów. W tym wypadku nie wiemy, czy lżejszy obiekt to gwiazda neutronowa czy czarna dziura. To wciąż tajemnica. Zbadanie, w jaki sposób powstają takie układy może zmienić nasze rozumienie ewolucji gwiazd, mówi doktor Christopher Berry z Institute for Gravitational Research University of Glasgow, którego naukowcy odegrali kluczową rolę w analizie danych.
      Od dziesięcioleci czekamy na rozwiązanie tej zagadki. Nie wiemy, czy ten obiekt to najbardziej masywna gwiazda neutronowa czy najmniej masywna czarna dziura. Tak czy inaczej jest to rekordowy obiekt, mówi profesor Vicky Kalogera z Northwestern University, a profesor Patrick Brady, rzecznik prasowy eksperymentu LIGO, dodaje: to zmieni sposób postrzegania czarnych dziur i gwiazd neutronowych. Może się okazać, że „luka masy” nie istnieje, a wynika ona tylko z naszych ograniczonych możliwości obserwacyjnych. Potrzebujemy więcej czasu i kolejnych obserwacji, by to rozstrzygnąć.
      Naukowcy mają nadzieję, że kolejna rozbudowa możliwości obserwatorium LIGO, z obecnego Advanced LIGO do Advanced LIGO Plus, pozwoli na przeprowadzenie większej liczby bardziej szczegółowych obserwacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie w Glasgow po raz pierwszy eksperymentalnie potwierdzono teorię dotyczącą pozyskiwania energii z czarnych dziur. W 1969 roku wybitny fizyk Roger Penrose stwierdził, że można wygenerować energię opuszczając obiekt do ergosfery czarnej dziury. Ergosfera to zewnętrzna część horyzontu zdarzeń. Znajdujący się tam obiekt musiałby poruszać się szybciej od prędkości światła, by utrzymać się w miejscu.
      Penrose przewidywał, że w tym niezwykłym miejscu w przestrzeni obiekt nabyłby ujemną energię. Zrzucając tam obiekt i dzieląc go na dwie części tak, że jedna z nich wpadnie do czarnej dziury, a druga zostanie odzyskana, spowodujemy odrzut, który będzie mierzony wielkością utraconej energii negatywnej, a to oznacza, że odzyskana część przedmiotu zyska energię pobraną z obrotu czarnej dziury. Jak przewidywał Penrose, trudności inżynieryjne związane z przeprowadzeniem tego procesu są tak wielkie, że mogłaby tego dokonać jedynie bardzo zaawansowana obca cywilizacja.
      Dwa lata później znany radziecki fizyk Jakow Zeldowicz uznał, że teorię tę można przetestować w prostszy, dostępny na Ziemi sposób. Stwierdził, że „skręcone” fale światła uderzające o powierzchnię obracającego się z odpowiednią prędkością cylindra zostaną odbite i przejmą od cylindra dodatkową energię. Jednak przeprowadzenie takiego eksperymentu było, i ciągle jest, niemożliwe ze względów inżynieryjnych. Zeldowicz obliczał bowiem, że cylinder musiałby poruszać się z prędkością co najmniej miliarda obrotów na sekundę.
      Teraz naukowcy z Wydziału Fizyki i Astronomii University of Glasgow opracowali sposób na sprawdzenie teorii Penrose'a. Wykorzystali przy tym zmodyfikowany pomysł Zeldowicza i zamiast "skręconych" fal światła użyli dźwięku, źródła o znacznie niższej częstotliwości, i łatwiejszego do użycia w laboratorium.
      Na łamach Nature Physics Brytyjczycy opisali, jak wykorzystali zestaw głośników do uzyskania fal dźwiękowych, skręconych na podobieństwo fal świetlnych w pomyśle Zeldowicza. Dźwięk został skierowany w stronę obracającego się piankowego dysku, który go absorbował. Za dyskiem umieszczono zestaw mikrofonów, które rejestrowały dźwięk przechodzący przez dysk, którego prędkość obrotowa była stopniowo zwiększana.
      Naukowcy stwierdzili, że jeśli teoria Penrose'a jest prawdziwa, to powinni odnotować znaczącą zmianę w częstotliwości i amplitudzie dźwięku przechodzącego przez dysk. Zmiana taka powinna zajść w wyniku efektu Dopplera.
      Z liniową wersją efektu Dopplera wszyscy się zetknęli słysząc syrenę karetki pogotowia, której ton wydaje się rosnąć w miarę zbliżania się pojazdu i obniżać, gdy się on oddala. Jest to spowodowane faktem, że gdy pojazd się zbliża, fale dźwiękowe docierają do nas coraz częściej, a gdy się oddala, słyszymy je coraz rzadziej. Obrotowy efekt Dopplera działa podobnie, jednak jest on ograniczony do okrągłej przestrzeni. Skręcone fale dźwiękowe zmieniają ton gdy są mierzone z punktu widzenia obracającej się powierzchni. Gdy powierzchnia ta obraca się odpowiednio szybko z częstotliwością dźwięku dzieje się coś dziwnego – przechodzi z częstotliwości dodatniej do ujemnej, a czyniąc to pobiera nieco energii z obrotu powierzchni, wyjaśnia doktorantka Marion Cromb, główna autorka artykułu.
      W miarę jak rosła prędkość obrotowa obracającego się dysku, ton dźwięku stawał się coraz niższy, aż w końcu nie było go słychać. Później znowu zaczął rosnąć, aż do momentu, gdy miał tę samą wysokość co wcześniej, ale był głośniejszy. Jego amplituda była o nawet 30% większa niż amplituda dźwięku wydobywającego się z głośników.
      To co usłyszeliśmy podczas naszych eksperymentów było niesamowite. Najpierw, w wyniku działania efektu Dopplera częstotliwość fal dźwiękowych zmniejszała się w miarę zwiększania prędkości obrotowej dysku i spadła do zera. Później znowu pojawił się dźwięk. Stało się tak, gdyż doszło do zmiany częstotliwości fal z dodatniej na ujemną. Te fale o ujemnej częstotliwości były w stanie pozyskać część energii z obracającego się dysku i stały się głośniejsze. Zaszło zjawisko, które Zeldowicz przewidział w 1971 roku, dodaje Cromb.
      Współautor badań, profesor Daniele Faccio, stwierdza: jesteśmy niesamowicie podekscytowani faktem, że mogliśmy eksperymentalnie potwierdzić jedną z najdziwniejszych hipotez fizycznych pół wieku po jej ogłoszeniu. I że mogliśmy potwierdzić teorię dotyczącą kosmosu w naszym laboratorium w zachodniej Szkocji. Sądzimy, że otwiera to drogę do kolejnych badań. W przyszłości chcielibyśmy badać ten efekt za pomocą różnych źródeł fal elektromagnetycznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W październiku ubiegłego roku informowaliśmy, że Dziewiąta Planeta, hipotetyczny nieznany dotychczas obiekt wchodzący w skład Układu Słonecznego, może nie być planetą. Astronomowie Jakub Scholtz z Durham University i James Unwin z University of Illinois at Chicago zaproponowali hipotezę mówiącą, że to... pierwotna czarna dziura. Teraz Edward Witten z Princeton University zauważa, że takiego obiektu nie można by wykryć za pomocą teleskopów, jednak stwierdza, że można by go zauważyć wysyłając w kierunku jego domniemanego położenia setki lub tysiące niewielkich sond.
      Propozycja Wittena to modyfikacja projektu Breakthrough Starshot. Jak pisaliśmy, autorzy tego projektu proponują wysłanie do Alfa Centauri pojazdu napędzanego żaglem słonecznym. Pojazd taki zostałyby rozpędzony za pomocą światła lasera do prędkości 20% prędkości światła i dotarłby do Alfa Centauri w ciągu 20 lat. Witten oblicza zaś, że wykorzystując podobny system można by wysłać w podróż większy pojazd – o wadze około 100 gramów – dzięki czemu nie byłaby potrzebna tak wielka miniaturyzacja jak w Breakthrough Starshot. Pojazd taki, poruszając się z prędkością 0,001 (300 km/s) c mógłby w ciągu 10 lat przebyć odległość 500 jednostek astronomicznych.
      Wysyłając całą flotę w stronę, gdzie powinna znajdować się hipotetyczna czarna dziura krążąca w Układzie Słonecznym może zdarzyć się tak, że kilka z tych sond przeleci w odległości nie większej niż kilkadziesiąt jednostek astronomicznych. Oddziaływanie dziury spowodowałoby, że sondy by przyspieszyły. Jeśli wysyłałyby one regularne sygnały na Ziemię, oddziaływanie grawitacyjne czarnej dziury spowodowałyby wydłużenie interwału pomiędzy impulsami.
      Witten oblicza, że do wykrycia w ten sposób czarnej dziury potrzeba by było sygnałów, których opóźnienie lub przyspieszenie byłoby mniejsze niż 10-5 sekundy na rok. Taką dokładność można bez przeszkód uzyskać za pomocą współczesnych zegarów atomowych. Jednak trudno wyobrazić sobie umieszczenie zegara atomowego w pojeździe ważącym zaledwie 100 gramów. Witten przyznaje, że jego propozycja jest bardziej teoretyczna niż praktyczna. Nie wiem, ani czy taki pomysł da się zrealizować, ani czy – gdyby było to możliwe to realizacji – jest to najlepszy sposób.
      Na artykuł Wittena zareagowali Scott Lawrence i Zeeve Rogoszinski z University of Maryland, którzy zaproponowali rozwiązanie bez potrzeby używania zegarów atomowych. Ich zdaniem obecność czarnaj dziury można by stwierdzić wykrywając zaburzenia trajektorii ruchu sond wywołane przez jej oddziaływanie grawitacyjne. W przeciwieństwie do pomysłu Wittena, gdzie różnice w sygnałach są powodowane przyspieszeniem próbników w pobliżu czarnej dziury, pomysł Lawrence'a i Rogoszinskiego ma i tę zaletę, że zaburzenia orbity próbników kumulowałyby się przez wiele lat.
      Co po latach sondy zboczyłyby z toru lotu o 1000 kilometrów. Co prawda znajdowałyby się wówczas w odległości 500 j.a. od Ziemi, jednak – jak wyliczają naukowcy – zaburzenia trajektorii można by wykryć za pomocą interferometrii bazowej wykorzystującej wysokie częstotliwości radiowe. Tutaj jednak pojawiaj się inny problem techniczny. Sondy musiałyby albo emitować taki sygnał, albo przynajmniej go odbijać.
      Jednak być może obie propozycje należy wyrzucić do kosza. Jak bowiem zauważają w swojej pracy Theim Haong z Koreańskiego Instytutu Astronomii i Badań Kosmosu oraz Abraham Loez z Uniwersytetu Harvarda, autorzy dwóch wspomnianych pomysłów potraktowali sondy jako obiekty podlegające jedynie grawitacji. Tymczasem opory i oddziaływania elektromagnetyczne w nierównomiernie rozłożonej materii międzygwiezdnej również wpływałyby na trajektorię i prędkość sond, przykrywając wszelki wpływ czarnej dziury.
      Mike Brown z Caltechu, który wraz z Konstantinem Batyginem wysunęli hipotezę o istnieniu Dziewiątej Planety mówi, że podobają mu się te propozycje. Jednak uważam, że nie ma żadnych podstaw, by sądzić, że Dziewiąta Planeta jest w rzeczywistości czarną dziurą. Wciąż jej szukamy. Jeśli nie znajdziemy jej za pomocą obecnie dostępnych narzędzi, co myślę, że szybko zostanie ona zauważona dzięki Vera C Rubin Observatory. Nie wiem jednak, kiedy to nastąpi.

      « powrót do artykułu
×
×
  • Create New...