Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Nowe neurony powstają w mózgach do 10. dekady życia. Dotyczy to również osób z chorobą Alzheimera (ChA).

Naukowcy z Uniwersytetu Illinois w Chicago badali pośmiertnie tkankę mózgu osób w wieku 79-99 lat. Okazało się, że neurogeneza zachodzi do późnego wieku. Co więcej, Amerykanie zauważyli, że nowe neurony powstają także u ludzi z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI) i z ChA. W porównaniu do zdrowych osób, neurogeneza jest w ich przypadku znacząco ograniczona.

Badanie zespołu z Uniwersytetu Illinois po raz pierwszy zapewniło dowody, że w tkance hipokampalnej starszych ludzi, także tych cierpiących na choroby oddziałujące na hipokamp, występuje znacząca liczba nerwowych komórek macierzystych i rozwijających się neuronów.

Odkryliśmy, że aktywna neurogeneza występuje u ludzi, którzy przekroczyli dziewięćdziesiątkę już jakiś czas temu. Interesujące jest to, że widzieliśmy nowe neurony u pacjentów z ChA i zaburzeniami poznawczymi - opowiada prof. Orly Lazarov.

Lazarov ustaliła także, że bez względu na zakres zmian patologicznych, osoby, które lepiej wypadały w testach poznawczych, w chwili śmierci miały w hipokampie więcej rozwijających się neuronów. Niższy stopień neurogenezy wiąże się więc raczej z objawami spadku możliwości poznawczych i pogorszeniem plastyczności synaptycznej niż ze stopniem zmian patologicznych w mózgu.

Wpływ patologii i neurogenezy jest złożony i [obecnie] nie rozumiemy dokładnie, jak te dwa procesy są ze sobą połączone. Oczywiste jest jednak, że występuje tu duże zróżnicowanie osobnicze.

Lazarov jest zafascynowana terapeutycznymi możliwościami swojego odkrycia. Fakt, że w hipokampie seniorów znaleźliśmy nerwowe komórki macierzyste i nowe neurony, oznacza, że jeśli znajdziemy sposób wspomagania neurogenezy, np. za pomocą jakiegoś drobnocząsteczkowego związku, będziemy w stanie spowolnić albo zapobiec spadkowi formy poznawczej. Dotyczy to zwłaszcza początkowych faz choroby, kiedy wszelkie interwencje są najbardziej skuteczne.

Autorzy publikacji z pisma Cell Stem Cell analizowali tkanki hipokampa 18 osób w średnim wieku 90,6 r. Dzięki barwieniu wykryli średnio ok. 2000 nerwowych komórek progenitorowych i ok. 150 tys. rozwijających się neuronów na mózg. Liczba namnażających się komórek była znacząco niższa u osób z MCI i ChA.

Amerykanie chcą sprawdzić, czy nowe neurony, które powstają w mózgach starszych osób, zachowują się tak samo, jak nowe neurony w młodszych mózgach.

Nadal nie wiemy wielu rzeczy o procesie dojrzewania nowych neuronów i funkcji neurogenezy w starszych mózgach, dlatego trudno powiedzieć, w jakim stopniu może to znosić skutki zaburzeń poznawczych i choroby Alzheimera.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badania prowadzone przez naukowców z Kanady sugerują, że rozwój glejaka wielopostaciowego – niezwykle agresywnego i śmiertelnego nowotworu mózgu – może być powiązany z procesem zdrowienia mózgu. Uraz, udar czy infekcja mogą napędzać nowotwór, gdy nowe komórki, mające zastąpić te zniszczone w czasie urazu, ulegną mutacjom. Odkrycie może doprowadzić do rozwoju nowych technik walki z glejakiem, jednym z najtrudniejszych w leczeniu nowotworów mózgu u dorosłych.
      Zdobyte przez nas dane wskazują, że odpowiednie mutacje w konkretnych komórkach mózgu mogą mieć swoją przyczynę w urazie i prowadzić do rozwoju nowotworu, mówi doktor Peter Dirks, ordynator oddziału neurochirurgii w Hospital for Sick Children (SickKids). W badaniach brali też udział naukowcy z University of Toronto oraz Princess Margaret Cancer Centre.
      Glejak może być postrzegany jako rana, która nigdy się nie goi. Jesteśmy podekscytowani naszym odkryciem, gdyż mówi nam ono, w jaki sposób nowotwór się zaczyna i jak rośnie. To zaś pozwala nam myśleć o nowych sposobach leczenia skoncentrowanych na ranie i odpowiedzi zapalnej, dodaje Dirks.
      Obecnie istnieją bardzo ograniczone możliwości leczenia glejaka, a pacjenci żyją średnio zaledwie 15 miesięcy od postawienia diagnozy. Niepowodzenie w leczeniu ma swoje korzenie w dużej różnorodności zarówno pomiędzy guzami, jak i pacjentami. Glejaki zawierają wiele różnych typów komórek, w tym rzadkie komórki macierzyste glejaka (GSC), które napędzają wzrost guza, wyjaśnia Dirks.
      Zespół Dirksa już wcześniej wykazał, że GSC zapoczątkowują glejaka i jego wznowę po leczeniu. Dlatego też postanowili bliżej przyjrzeć się tym komórkom. Wykorzystali w tym celu najnowsze techniki sekwencjonowania RNA oraz maszynowego uczenia się. Stworzyli na tej podstawie molekularną mapę GSC pobranych z guzów 26 pacjentów.
      Uzyskane wyniki potwierdziły istnienie olbrzymiego zróżnicowania, co wskazuje, że każdy z guzów zawiera wiele podtypów molekularnie zróżnicowanych GSC. To powoduje, że po leczeniu guz prawdopodobnie powróci, gdyż stosowane terapie nie są w stanie zabić wszystkich tych podtypów komórek. Naszym celem jest znalezienie leku, który zabije wszystkie rodzaje komórek macierzystych glejaka. By jednak tego dokonać musimy najpierw zrozumieć budowę molekularną tych komórek, mówi profesor Gary Bader z University of Toronto.
      Co interesujące, znaleziono liczne podtypy GSC, których budowa molekularna wskazywała na związki ze stanem zapalnym. To wskazywało, że przynajmniej niektóre glejaki rozpoczynają się w wyniku naturalnego procesu leczenia po urazie. Dirks mówi, że do takich mutacji rozpoczynających glejaka może dochodzić na wiele lat przed pojawieniem się choroby. Niewykluczone, że gdy w procesie leczenia mózgu po urazie pojawia się zmutowana komórka, nie może przestać się ona dzielić, gdyż nie działają jej mechanizmy kontrolne i w wyniku tego procesu dochodzi do rozwoju guza.
      Gdy uczeni jeszcze bliżej przyjrzeli się komórkom, okazało się, że każdy guz znajduje się w jednym z dwóch stanów molekularnych – roboczo nazwanych „rozwojowym” i „odpowiedzią na uraz” – lub gdzieś na gradiencie pomiędzy nimi. Stan „rozwojowy” to znak rozpoznawczy komórek macierzystych i przypomina stan, w którym komórki macierzyste mózgu bardzo szybko się dzielą przed urodzeniem. Drugi ze stanów był zaś dla naukowców niespodzianką. Nazwali go oni „odpowiedzią na uraz”, gdyż ma tam miejsce zwiększenie ekspresji szlaków immunologicznych i markerów zapalnych, takich jak interferon i TNFalfa. To wskaźniki toczącego się procesu zdrowienia. Zjawiska te udało się zauważyć dopiero teraz, dzięki nowoczesnym technikom sekwencjonowania RNA pojedynczych komórek.
      Dalsze eksperymenty pokazały, że oba te stany są wrażliwe na różne typy usunięcia genów. Ujawniono w ten sposób potencjalne metody leczenia, które dotychczas nie były brane pod uwagę przy glejaku. Badania pokazały też, że względny stosunek obu stanów jest cechą indywidualną każdego guza. Komórki każdego z nich mogą znajdować się w różnym miejscu na osi pomiędzy stanem „rozwojowym” a „odpowiedzią na uraz”. Podczas gdy GSC każdego pacjenta składają się z różnych populacji, wszystkie one znajdują się na jedne biologicznej osi pomiędzy dwoma stanami definiowanymi przez procesy neurorozwoju i zapalne, stwierdzają autorzy badań.
      Teraz Kanadyjczycy zastanawiają się nad metodami leczenia. Odkryta przez nas heterogeniczność komórek macierzystych wskazuje, że trzeba opracować terapie biorące na cel jednocześnie procesy rozwojowe i zapalne. Szukamy leków, które działają w różnych miejscach osi między oboma stanami. Istnieje tutaj potrzeba rozwoju zindywidualizowanego podejścia do pacjenta. Trzeba będzie wykonać badania guza na poziomie pojedynczej komórki i na tej podstawie przygotować koktajl leków, który w tym samym momencie będzie działał na różne podtypy komórek macierzystych, stwierdza doktor Trevor Pugh z Princess Margaret Cancer Centre.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z amerykańskich Narodowych Instytutów Zdrowia (NIH) donoszą, że skutkiem ubocznym COVID-19 może być uszkodzenie mózgu. Do takich wniosków doszli naukowcy, którzy zbadali mózgi zmarłych na COVID-19. W tkance 19 osób, które zmarły wkrótce po zarażeniu znaleźli ślady uszkodzeń spowodowanych zmniejszeniem grubości i przeciekaniem naczyń krwionośnych mózgu.
      Z wcześniejszych badań wynika, że wirus SARS-CoV-2 może zarówno uszkadzać barierę krew-mózg jak i przedostawać się do mózgu. Dlatego też naukowcy chcieli sprawdzić, jak COVID-19 wpływa na mózg. Okazało się jednak, że w uszkodzonej tkance nie znaleziono śladów samego wirusa, co wskazuje, że przyczyną uszkodzeń nie był jego bezpośredni atak na mózg.
      Stwierdziliśmy, że mózgi pacjentów zarażonych SARS-CoV-2 mogą być podatne na mikrouszkodzenia naczyń krwionośnych. Wyniki naszych badań sugerują, że mogą być one powodowane przez sam organizm, który na obecność wirusa reaguje stanem zapalnym, mówi jeden z autorów badań doktor Avindra Nath, dyrektor ds. klinicznych w Narodowym Instytucie Zaburzeń Neurologicznych i Udaru (NINDS). Mamy nadzieję, że badania te pomogą lepiej zrozumieć pełne spektrum problemów, z którymi borykają się pacjenci i pozwolą opracować lepsze metody leczenia.
      COVID-19 to przede wszystkim choroba układu oddechowego. Jednak pacjenci często doświadczają objawów neurologicznych, takich jak bóle głowy, utrata węchu, smaku, zmęczenie czy problemy poznawcze. Mogą też pojawiać się udary i inne stany patologiczne.
      Już wcześniejsze badania wykazały, że choroba może powodować stany zapalne i uszkodzenia naczyń krwionośnych. Specjaliści wciąż jednak próbują zrozumieć, jak wpływa ona na mózg.
      Nath i jego koledzy zbadali tkankę mózgową 19 osób, które zmarły pomiędzy marcem a lipcem 2020 roku w ciągu od kilku godzin po dwa miesiące od pojawienia się u nich pierwszych objawów COVID-19.Wiek pacjentów wahał się od 5 do 73 lat. U wielu z nich występował jeden lub więcej czynnik ryzyka, taki jak otyłość, cukrzyca czy choroba układu krążenia. Osiem osób zmarło w domach lub w miejscach publicznych, kolejnych trzech nagle przewróciło się i zmarło.
      Naukowcy rozpoczęli badania od obrazowania tkanki mózgowej za pomocą potężnego skanera do rezonansu magnetycznego (MRI), który jest od 4 do 10 razy bardziej czuły niż standardowe skanery MRI. Specjaliści sprawdzali próbki opuszek węchowych oraz pnia mózgu każdego z pacjentów. Wybrano te obszary, gdyż przypuszcza się, że są one szczególnie wrażliwe na COVID-19. Opuszki węchowe kontrolują zmysł węchu, a pień mózgu odpowiada za kontrolę oddychania i akcji serca.
      Skany ujawniły, że w obu miejscach występują liczne jasne punkty podwyższenia sygnału, wskazujące na stan zapalny, oraz ciemne punkty obniżenia sygnału, wskazujące na krwawienie. Gdy dzięki MRI zidentyfikowano problematyczne miejsca, zostały one poddane szczegółowym padaniom pod mikroskopem.
      Naukowcy stwierdzili, że miejsca podwyższenia sygnału zawierają ściany naczyń, które były cieńsze niż normalnie i czasem wyciekały z nich do mózgu białka krwi, takie jak fibrynogen. Wydaje się, że to powodowało reakcję zapalną. Punkty takie były bowiem otoczone limfocytami T z krwi oraz komórkami mikrogleju, który bierze udział w odpowiedzi immunologicznej mózgu. Z kolei tam, gdzie na MRI występowały ciemne obszary znajdowała się zakrzepła krew, nieszczelne naczynia krwionośne, ale nie było komórek odpornościowych.
      Byliśmy całkowicie zaskoczeni. Spodziewaliśmy się uszkodzeń spowodowanych niedotlenieniem. Tymczasem zobaczyliśmy wieloogniskowe uszkodzenia typowe dla udarów i chorób neurozapalnych.
      Uczeni wykorzystali też liczne metody wykrywania w tkance obecności materiału genetycznego i białek wirusa SARS-CoV-2, jednak okazało się, że wirusa w tkance nie było.
      Jak dotąd wydaje się, że zaobserwowane uszkodzenia nie zostały spowodowane bezpośrednim zainfekowaniem mózgu przez wirusa. W kolejnym etapie badań chcemy sprawdzić, jak COVID-19 uszkadza naczynia krwionośne mózgu i czy powoduje to obserwowane u pacjentów krótko- i długoterminowe objawy neurologiczne, mówi doktor Nath.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ponad 30% osób chorujących na COVID-19 doświadcza objawów neurologicznych, takich jak utrata węchu i smaku, bóle głowy, zmęczenie, mdłości i wymioty. Do tego mogą dołączać ostra choroba naczyniowo-mózgowa czy zaburzenia świadomości. Objawy te sugerują, że wirus SARS-CoV-2 może przedostawać się do mózgu. I rzeczywiście, zarówno w mózgach zmarłych jak i w płynie mózgowo-rdzeniowym znaleziono RNA wirusa, nie wiadomo jednak, w jaki sposób on się tam znalazł.
      Niemiecki zespół naukowy z Charite, Wolnego Uniwersytetu Berlińskiego, Instytutu Roberta Kocha i innych instytucji badawczych, odkrył RNA oraz białka wirusa w różnych anatomicznie obszarach nosogardła i mózgu. Autopsje zmarłych sugerują, że wirus może przedostawać się do mózgu poprzez nos.
      Na łamach Nature Neuroscience, w artykule Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 opisano badania, które przeprowadzono na 33 osobach zmarłych chorujących na COVID-19.
      Naukowcy zauważają, że wśród 7 koronawirusów, które infekują ludzi, co najmniej dwa endemiczne szczepy są w stanie przedostać się do centralnego układu nerwowego. Są to SARS-CoV oraz MERS-CoV, które ewolucyjnie są blisko spokrewnione z SARS-CoV-2. Teraz autorzy najnowszych badań donoszą, że RNA wirusa SARS-CoV-2 wykryli w centralnym układzie nerwowym 48% pacjentów, których poddali autopsji.
      Profesor Frank Heppner z Charité–Universitätsmedizin Berlin i jego zespół sprawdzili nosogardło – pierwsze miejsce, w którym może dochodzić do infekcji i replikacji wirusa – oraz mózgi 33 pacjentów (22 mężczyzn i 11 kobiet), które zmarły w czasie, gdy chorowały na COVID-19. Mediana wieku zmarłych wynosiła 71,6, a mediana czasu od wystąpienia objawów COVID-19 do zgonu to 31 dni.
      Autorzy badań odkryli RNA wirusa SARS-CoV-2 w nosogardle i mózgu wielu badanych. Najwięcej wirusowego RNA znajdowało się w błonie śluzowej nosa. Zauważyli też, że czas trwania choroby był ujemnie skorelowany z ilością wykrytego materiału wirusowego, co oznacza, że więcej śladów SARS-CoV-2 odkryto u osób, które chorowały krócej.
      Naukowcy donoszą też, że białko S wirusa, za pomocą którego infekuje on komórki, znajdowało się w pewnych typach komórek błony śluzowej. Nie można wykluczyć, że wirus wykorzystuje fakt, że komórki te sąsiadują z komórkami nabłonka i nerwowymi, dzięki czemu może dostać się do mózgu. U niektórych pacjentów białko S znaleziono w komórkach, w których dochodzi do ekspresji markerów neuronowych. Nie można więc wykluczyć, że wirus infekuje neurony węchowe oraz te obszary mózgu, do których docierają informacje o smaku i zapachu. Co więcej, ślady wirusa znaleziono też w innych obszarach mózgu, w tym w rdzeniu przedłużonym, w którym znajdują się m.in. ośrodek oddechowy, ośrodek sercowy czy ośrodki odpowiedzialne za wymioty.
      Spostrzeżenia niemieckich naukowców mogą wyjaśniać wiele objawów neurologicznych, które występują u chorujących na COVID-19.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czerwone buraki są pełne składników, których spożycie jest wiązane z wieloma prozdrowotnymi zjawiskami jak zwiększona produkcja białych krwinek czy obniżenie ciśnienia. Naukowcy z Uniwersytetu Wiedeńskiego poinformowali o wyizolowaniu z czerwonych buraków peptydu, który może być lekiem stosowanym w zwalczaniu stanów zapalnych.
      Przeanalizowaliśmy tysiące danych genetycznych, dzięki czemu byliśmy w stanie wychwycić liczne peptydy bogate w cysteiny i przypisać je do konkretnych roślin. Szczególnie interesowały nas te, które mogą potencjalnie działać jako inhibitory proteazy. Peptyd z buraków może blokować enzymy rozkładające białka, mówi główny autor badań, profesor Christian Gruber.
      Gruber i jego zespół zauważyli, że peptyd z buraka hamuje działanie oligopeptydazy prolilowej (POP). To proteaza serynowa, która jest zaangażowana w rozszczepienie wielu neuroaktywnych peptydów. Jest wiązana z procesami neurodegeneracyjnymi i regulowaniem stanu zapalnego.
      POP bierze udział w wielu procesach zachodzących w centralnym układzie nerwowym, w tym w uczeniu się, zapamiętywania i regulowaniu nastroju. Wiemy też, że kilka inhibitorów POP pomyślnie przeszło testy prekliniczne, dając nadzieję, że związki te mogą przydać się leczeniu utraty pamięci związanej z wiekiem czy chorobą Alzheimera.
      Zidentyfikowany przez grupę Gubera peptyd został nazwany bevuTI-I. To pierwszy znany inhibitor POP z rodziny proteaz serynowych trypsyny.
      Chociaż czerwone buraki to zdrowe warzywa, nie należy przypuszczać, że ich jedzenie będzie zapobiegało demencji. Odkryty przez nas peptyd występuje w burakach w bardzo małych ilościach i nie wiadomo, czy działa po przejściu przez układ pokarmowy, podkreśla Gruber. Przeszukujemy wielką bazę danych genetycznych roślin i zwierząt, poszukujemy nowych peptydów, badamy ich strukturę, a te najbardziej obiecujące chcemy przetestować na enzymach i receptorach komórkowych, a w końcu przeanalizować je na modelach chorób, dodaje uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Osoby, które nieświadomie postrzegają w swoim otoczeniu złożone wzorce – a zatem mają zdolność do bezwarunkowego uczenia się wzorców (implicit pattern learning) – z większym prawdopodobieństwem są osobami silnie wierzącymi, że istnieje istota wyższa, która wzorce te stworzyła, informują neurolodzy z Georgetown University. Przeprowadzili oni pierwsze badania nad wpływem bezwarunkowego uczenia się na wierzenia religijne.
      Uczenie bezwarunkowe to zdobywanie wiedzy niezależnie od świadomych prób i w nieświadomości tego, czego się nauczyliśmy. Jest ono też zwane „milczącą wiedzą”.
      Naukowcy z Georgetown chcieli zbadać, czy bezwarunkowe uczenie się wzorców leży u podstaw wiary, a jeśli tak, to czy zjawisko to jest niezależne od kręgu kulturowego czy wyznawanej religii. Dlatego też przeprowadzili badania wśród dwóch grup religijnych: jednej w USA i drugiej w Afganistanie.
      Istnienie boga lub bogów, którzy interweniują w naszym świecie, by wprowadzić w nim porządek, jest kluczowym elementem wielu religii. Nasze badania nie dotyczą tego, czy Bóg istnieje. To badania mające na celu znalezienie odpowiedzi na pytanie jak i dlaczego nasze mózgi wierzą w bogów. Postawiliśmy hipotezę, że osoby, których mózgi są dobre w podświadomym postrzeganiu wzorców w otoczeniu, mogą przypisywać te wzorce działaniom siły wyższej, mówi jeden z głównych autorów badań, profesor Adam Green, dyrektor Georgetown Laboratory for Relational Cognition.
      Naukowcy zauważyli, że wiele interesujących procesów ma miejsce pomiędzy dzieciństwem a dorosłością. Ich badania sugerują, że jeśli dziecko nieświadomie dostrzega wzorce w otoczeniu, w miarę dorastania jego wiara z większym prawdopodobieństwem będzie coraz silniejsza. Z drugiej strony, jeśli takich wzorców nie dostrzega, to jego wiara prawdopodobnie będzie coraz mniejsza, nawet jeśli wychowuje się w religijnej rodzinie.
      Podczas badań naukowcy wykorzystali znany test sprawdzający zdolność do bezwarunkowego uczenia się wzorców. Uczestnikom testu pokazywano na ekranie sekwencje kropek, które ukazywały się i znikały. Zadaniem badanych było jak najszybsze naciśnięcie przycisku odpowiadającego położeniu kropki. Kropki pojawiały się i znikały szybko, ale niektórzy z uczestników – osoby o największej zdolności do bezwarunkowego uczenia się wzorców – zaczęli po pewnym czasie nieświadomie uczyć się wzorców pojawiania się kropek i naciskali odpowiedni przycisk zanim jeszcze kropka się pojawiła.
      Amerykańska grupa badanych składała się ze 199 osób, głównie chrześcijan, mieszkających w stolicy kraju. Grupa afgańska to mieszkańcy Kabulu. Składała się ona ze 149 muzułmanów. Najbardziej interesującym aspektem badań, zarówno dla mnie jak i dla moich afgańskich kolegów, było spostrzeżenie, że zarówno proces poznawczy jak i jego znaczenie dla religijności, były takie same w obu grupach, mówi współautor badań, Zachery Warren. Mózg, który ma większe predyspozycje do bezwarunkowego uczenia się wzorców może mieć też większe skłonności do wiary w boga, niezależnie od tego, w jakim miejscu na świecie i w jakim kontekście religijnym mieszka dana osoba, dodaje profesor Green.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...