Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Nowe neurony powstają w mózgach do 10. dekady życia. Dotyczy to również osób z chorobą Alzheimera (ChA).

Naukowcy z Uniwersytetu Illinois w Chicago badali pośmiertnie tkankę mózgu osób w wieku 79-99 lat. Okazało się, że neurogeneza zachodzi do późnego wieku. Co więcej, Amerykanie zauważyli, że nowe neurony powstają także u ludzi z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI) i z ChA. W porównaniu do zdrowych osób, neurogeneza jest w ich przypadku znacząco ograniczona.

Badanie zespołu z Uniwersytetu Illinois po raz pierwszy zapewniło dowody, że w tkance hipokampalnej starszych ludzi, także tych cierpiących na choroby oddziałujące na hipokamp, występuje znacząca liczba nerwowych komórek macierzystych i rozwijających się neuronów.

Odkryliśmy, że aktywna neurogeneza występuje u ludzi, którzy przekroczyli dziewięćdziesiątkę już jakiś czas temu. Interesujące jest to, że widzieliśmy nowe neurony u pacjentów z ChA i zaburzeniami poznawczymi - opowiada prof. Orly Lazarov.

Lazarov ustaliła także, że bez względu na zakres zmian patologicznych, osoby, które lepiej wypadały w testach poznawczych, w chwili śmierci miały w hipokampie więcej rozwijających się neuronów. Niższy stopień neurogenezy wiąże się więc raczej z objawami spadku możliwości poznawczych i pogorszeniem plastyczności synaptycznej niż ze stopniem zmian patologicznych w mózgu.

Wpływ patologii i neurogenezy jest złożony i [obecnie] nie rozumiemy dokładnie, jak te dwa procesy są ze sobą połączone. Oczywiste jest jednak, że występuje tu duże zróżnicowanie osobnicze.

Lazarov jest zafascynowana terapeutycznymi możliwościami swojego odkrycia. Fakt, że w hipokampie seniorów znaleźliśmy nerwowe komórki macierzyste i nowe neurony, oznacza, że jeśli znajdziemy sposób wspomagania neurogenezy, np. za pomocą jakiegoś drobnocząsteczkowego związku, będziemy w stanie spowolnić albo zapobiec spadkowi formy poznawczej. Dotyczy to zwłaszcza początkowych faz choroby, kiedy wszelkie interwencje są najbardziej skuteczne.

Autorzy publikacji z pisma Cell Stem Cell analizowali tkanki hipokampa 18 osób w średnim wieku 90,6 r. Dzięki barwieniu wykryli średnio ok. 2000 nerwowych komórek progenitorowych i ok. 150 tys. rozwijających się neuronów na mózg. Liczba namnażających się komórek była znacząco niższa u osób z MCI i ChA.

Amerykanie chcą sprawdzić, czy nowe neurony, które powstają w mózgach starszych osób, zachowują się tak samo, jak nowe neurony w młodszych mózgach.

Nadal nie wiemy wielu rzeczy o procesie dojrzewania nowych neuronów i funkcji neurogenezy w starszych mózgach, dlatego trudno powiedzieć, w jakim stopniu może to znosić skutki zaburzeń poznawczych i choroby Alzheimera.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze dokonali niezwykłego odkrycia dotyczącego mózgu ssaków. Okazuje się, że wakuolarna ATPaza (V-ATPase), jeden z kluczowych enzymów umożliwiających przekazywanie sygnałów w mózgu, włącza się i wyłącza według przypadkowych wzorców, czasami robiąc sobie wielogodzinne przerwy.
      W naszych mózgach miliony neuronów bez przerwy przekazują sobie informacje. Wykorzystują do tego celu neuroprzekaźniki wspomagane przez unikatowy enzym. Aktywność mózgu, przepływ informacji między neuronami, są kluczowe dla przetrwania. Dlatego też sądzono, że enzym pośredniczący w przekazywaniu sygnałów jest bez przerwy aktywny. Nic bardziej błędnego. Uczeni z Kopenhagi zauważyli, że aktywuje się on i dezaktywuje według przypadkowych wzorców.
      Po raz pierwszy nauka przyjrzała się działaniu tego enzymu w mózgu na poziomie pojedynczej molekuły. Jesteśmy zaskoczeni wynikiem badań. Wbrew powszechnie żywionym przekonaniom i wbrew temu, co dzieje się z wieloma innymi proteinami, te enzymy mogą przestać pracować na wiele minut, a nawet godzin. A mimo to mózg człowieka i wielu innych ssaków wciąż działa, mówi zaskoczony profesor Dimitrios Stamou. Dotychczas podczas podobnych badań wykorzystywano bardzo stabilne enzymy uzyskane z bakterii. Duńscy uczeni, dzięki wykorzystaniu innowacyjnych metod, mogli zbadać enzymy ssaków wyizolowane z mózgów szczurów.
      Podczas przesyłania informacji pomiędzy dwoma neuronami neuroprzekaźniki są najpierw pompowane do pęcherzyków synaptycznych. Spełniają one rolę pojemników, w których neuroprzekaźniki są przechowywane do czasu, gdy trzeba przekazać wiadomość. Wakuolarna ATPaza odpowiada za dostarczenie energii do pomp neuroprzekaźników. Bez niej pompy nie działają, zatem neuroprzekaźniki nie mogą trafić do pęcherzyków synaptycznych, nie ma więc możliwości przekazania informacji pomiędzy neuronami. Jednak naukowcy z Kopenhagi wykazali, że w każdym z pęcherzyków znajduje się tylko jedna molekuła. Gdy się ona wyłączy, pompa nie działa.
      To niezrozumiałe, że tak krytyczne zadanie, jak pompowanie neuroprzekaźników do pojemnika zostało powierzone pojedynczej molekule. Tym bardziej niezrozumiałe, że przez 40% czasu molekuła nie działa, mówi Dimitrios Stamou.
      Naukowcy zastanawiają się, czy fakt, że wakuolarna ATPaza się wyłącza oznacza, iż w pęcherzykach nie ma neuroprzekaźnika. Jeśli tak, to czy olbrzymia liczba jednocześnie pustych pęcherzyków wpływa na procesy komunikacyjne w mózgu? W końcu zaś, czy jest to „problem”, który w toku ewolucji neurony nauczyły się omijać, czy też jest to nieznany nam sposób kodowania informacji w mózgu.
      Szczegóły odkrycia zostały opisane na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Współpraca naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego i PAN zaowocowała powstaniem pulsującego neuronu stworzonego z fotonów. To podstawowy element fotonicznego procesora sieci neuronowych. Tego typu chipy, zwane układami neuromorficznymi, mają być w przyszłości podstawą systemów sztucznej inteligencji.
      Systemy fotoniczne zapewniają dużą prędkość przesyłania informacji przy jednoczesnym niewielkim zużyciu energii. Ich wadą jest zaś słabe oddziaływanie pomiędzy sobą, przez co trudno je wykorzystać do wykonywania operacji obliczeniowych. Dlatego też polscy wykorzystali ekscytony, cząstki o bardzo małej masie, z którymi fotony silnie oddziałują. Gdy fotony i ekscytony zostaną razem umieszczone we wnęce optycznej, powstaje między nimi trwały układ cyklicznej wymiany energii, który jest kwazicząstką – polarytonem.
      Polarytony mogą zaś, w odpowiednich warunkach, tworzyć kondensat Bosego-Einsteina. W tym stanie skupienia zaczynają tworzyć „superatom”, zachowujący się jak pojedyncza cząstka. Opierając się na naszym ostatnim eksperymencie, jako pierwsi zauważyliśmy, że kiedy polarytony są wzbudzane za pomocą impulsów laserowych, emitują impulsy światła przypominające pulsowanie neuronów biologicznych. Efekt ten jest bezpośrednio związany ze zjawiskiem kondensacji Bosego-Einsteina, które albo hamuje, albo wzmacnia emisję impulsów, wyjaśnia doktorantka Magdalena Furman z Wydziału Fizyki UW.
      Autorami modelu teoretycznego, który pozwala połączyć badania nad polarytonami z modelem neuronu są doktor Andrzej Opala i profesor Michał Matuszewski. Proponujemy wykorzystać nowy paradygmat obliczeniowy oparty na kodowaniu informacji za pomocą impulsów, które wyzwalają sygnał tylko wtedy, gdy przybędą do neuronu w odpowiednim czasie po sobie, mówi doktor Opala. Innymi słowy, taki sposób pracy takiego sztucznego neurony ma przypominać pracę neuronów biologicznych, pobudzanych impulsami elektrycznymi. W neuronie biologicznym dopiero powyżej pewnego progu impulsów docierających do neuronu, sygnał przekazywany jest dalej. Polarytony mogą naśladować neuron biologiczny, gdyż dopiero po pobudzeniu pewną liczbą fotonów powstaje kondensat Bosego-Einsteinai dochodzi do emisji sygnału do kolejnego neuronu.
      Mimo niewątpliwie interesujących badań, na wdrożenie pomysłu polskich uczonych przyjdzie nam jeszcze poczekać. Kondensat Bosego-Einsteina uzyskiwali oni w temperaturę zaledwie 4 kelwinów, którą można osiągnąć w ciekłym helu. Naszym kolejnym celem jest przeniesienie eksperymentu z warunków kriogenicznych do temperatury pokojowej. Potrzebne są badania nad nowymi materiałami, które pozwolą na uzyskanie kondensatów Bosego-Einsteina także w wysokich temperaturach. W Laboratorium Polarytonowym pracujemy nie tylko nad takimi substancjami, badamy też możliwość sterowania kierunkiem emitowanych fotonów, mówi profesor Jacek Szczytko z Wydziału Fizyki UW.
      W badaniach nad układami neuromorficznymi naukowcy wciąż napotykają na nowe wyzwania. Nasz nowy pomysł na odtworzenie pulsowania neuronów biologicznych w domenie optycznej, może posłużyć do stworzenia sieci, a potem układu neuromorficznego, w którym informacje przesyłane są o rzędy wielkości szybciej i w sposób bardziej efektywny energetycznie w porównaniu do dotychczasowych rozwiązań, dodaje doktor Krzysztof Tyszka.
      Szczegóły pracy zostały opisane na łamach Laser & Photonics Reviews.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Tufts University postanowili poszukać związków chemicznych, które spowalniałyby postępy choroby Alzheimera. W laboratorium na hodowlach komórek z alzheimerem przetestowali 21 związków, sprawdzając ich wpływ na formowanie się blaszek β-amyloidowych. Blaszki takie odkładają się w mózgach osób cierpiących na alzheimera.
      Naukowcy odkryli, że dwa powszechnie dostępne związki – katechiny z zielonej herbaty oraz obecny w czerwonym winie i innych produktach resweratrol – zmniejszają formowanie się blaszek w komórkach mózgu. Uczeni stwierdzili jednocześnie, że skutku uboczne – o ile w ogóle występują – są minimalne. Wyniki badań opublikowano na łamach Free Radical Biology and Medicine.
      Wspomniane związki najpierw przetestowano na uproszczonym modelu, a następnie te najbardziej obiecujące testowano z wykorzystaniem trójwymiarowego modelu tkanki nerwowej. Model taki buduje się z jedwabnej gąbki na którą nanoszone są komórki ludzkiej skóry. Komórki te przeprogramowuje się metodami inżynierii genetycznej tak, by zmieniały się z progenitorowe komórki macierzyste układu nerwowego. Przeprogramowane komórki namnażają się na gąbce, dzięki czemu powstaje trójwymiarowy sieć neuronów, podobna do tej znajdujące się w mózgu.
      Już przed kilkoma miesiącami naukowcy z Tufts wykazali, że blaszki β-amyloidu odkładają się pod wpływem wirusa opryszczki. Część badanych środków spowalniała tworzenie się złogów β-amyloidu dzięki swojemu działaniu antywirusowemu. Jednak naukowcy chcieli znaleźć te związki, które działają niezależnie od obecności wirusa.
      Wstępne badania pokazały, że 5 z testowanych związków ma silny wpływ na formowanie się blaszek, a jednocześnie nie wykazuje właściwości przeciwwirusowych. Obok katechin i resweratrolu są to kurkumina z ostryżu długiego, lek przeciwcukrzycowy Metformina oraz citikolina. Po zbadaniu skutków ubocznych i efektywności okazało się, że najlepsze są katechiny i resweratrol.
      Główna autorka badań, Dana Cairns, przypomina, że zaobserwowanie jakichś skutków w laboratorium nie oznacza, że będą one występowały też w organizmie.  Niektóre związki nie są w stanie przekroczyć bariery krew-mózg, więc nie mogą zapobiegać tworzeniu się blaszek, inne mogą charakteryzować się niską biodostępnością, zatem nie będą łatwo przenikały do krwi.
      Dokonane odkrycie może być mimo to znaczące, gdyż katechiny i resweratrol są łatwo dostępne i bezpieczne. Być może zainteresują się nimi producenci leków i, na przykład, rozpoczną nad nimi prace w celu zwiększenia ich biodostępności czy możliwości przenikania przez barierę krew-mózg.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Neurolog Anna Schapiro z University of Pennsylvania i jej zespół, wykorzystując model sieci neuronowej, odkryli, że gdy w czasie snu nasz mózg wchodzi i wychodzi z fazy REM, hipokamp uczy korę nową tego, czego dowiedział się za dnia. Od dawna wiadomo, że w czasie snu zachodzą procesy uczenia się i zapamiętywania. W ciągu dnia kodujemy nowe informacje i doświadczenia, idziemy spać, a gdy się budzimy, nasza pamięć jest już w jakiś sposób zmieniona, mówi Schapiro.
      Schapiro, doktorant Dhairyya Singh oraz Kenneth Norman z Princeton University stworzyli model obliczeniowy oparty na sieci neuronowej, który dał im wgląd w proces uczenia się w czasie snu.
      Z artykułu opublikowanego na łamach PNAS dowiadujemy się, że w czasie gdy mózg przechodzi z fazy NREM do REM, co ma miejsce około 5 razy w ciągu nocy, hipokamp przekazuje do kory nowej informacje zdobyte za dnia.
      To nie jest tylko model uczenia się lokalnych struktur mózgu. To model pokazujący, jak jeden obszar mózgu uczy drugi obszar mózgu w czasie snu, gdy nie ma wskazówek ze świata zewnętrznego. To również pokazuje, jak zapamiętujemy informacje o zmieniającym się otoczeniu, mówi Schapiro.
      Naukowcy zbudowali model złożony z hipokampu – obszaru mózgu odpowiedzialnego za zdobywanie nowych informacji – i kory nowej, w której m.in. odbywają się procesy związane z językiem, świadomością wyższego rzędu i pamięcią długotrwałą. Model pokazał, że podczas fazy NREM mózg – pod kierunkiem hipokampu – głównie „przegląda” najnowsze wydarzenia i dane, a w czasie fazy REM uruchamiane są dawniejsze wspomnienia, przechowywane w korze nowej. Oba te obszary mózgu komunikują się między sobą w fazie NREM. To wtedy hipokamp przekazuje do kory nowej to, czego się niedawno nauczył. Natomiast w fazie REM aktywuje się kora nowa, które odtwarza to, co już wie, dzięki czemu tworzone jest pamięć długotrwała, wyjaśnia Singh.
      Dodaje, że bardzo ważne jest przełączanie pomiędzy obiema fazami. Gdy kora nowa nie ma szans na odtworzenie sobie informacji, które przechowuje, zostają one nadpisane. Uważamy, że do powstania długotrwałych wspomnień konieczne jest przełączanie się pomiędzy fazami REM i NREM, stwierdza Singh.
      Naukowcy zastrzegają, że wciąż muszą potwierdzić eksperymentalnie swoje spostrzeżenia. Zauważają też, że ich symulacje dotyczyły dorosłej osoby, która dobrze przespała całą noc. Zatem nie muszą być prawdziwe w odniesieniu do innych sytuacji, jak np. do dzieci czy dorosłych, którzy dobrze nie spali. Tego typu model, który można dostosowywać do różnych sytuacji i osób, może być niezwykle przydatny w badaniach nad problemem snu. W dłuższej perspektywie posłuży on do badań nad zaburzeniami psychicznymi i neurologicznymi, w których zaburzenia snu są jednym z objawów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...