Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną.

Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury.

LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h).

Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki.

Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego.

Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca.

Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS.

Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur.

Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Czy może mi ktoś wyjaśnić w jaki sposób prześledzono trasę tej gwiazdy w ciągu poprzednich 33 mln lat? Czy to jakaś retrospektywna symulacja newtonowskiej mechaniki uwzględniająca wpływ grawitacyjny mijanych obiektów - takie gwiezdny bilard wspak czy też coś bardziej wyrafinowanego i nieobarczonego narastającym  błędem obliczeniowym?

Share this post


Link to post
Share on other sites

Nie może pochodzić z innej galaktyki? Albo nawet spoza galaktyk?

Tu oczywiście wiek wyjaśniłby sporo.

Takie gwiazdy mogłyby nabywać także prędkości w przypadku zderzeń dwóch galaktyk.

 

Share this post


Link to post
Share on other sites
Posted (edited)

Niezależnie od konkretnej trajektorii - pdp wywalenia gwiazdy z galaktyki jest raczej  kilka rzędów większe niż "przestrzelenia" galaktyki przez gwiazdę obcą.

Edited by ex nihilo

Share this post


Link to post
Share on other sites
Posted (edited)

Możliwe ale my się skupiamy na tej gwieździe bo jak rozumiem jest wyjątkowa - więc pdp niejako niejawnie odrzuciliśmy już na początku.

Jak już badamy albinosa bo nas zaciekawił to nie robimy czegoś takiego że częstość albinosów = ilość badanych albinosów/ ilość badanych =1/1 = 100 %.

Jeśli nawet na 1000 gwiazd tylko jedna jest gwiazdą z innej galaktyki ale za to porusza się nietypowo i zwraca naszą uwagę to trzeba zauważyć że ta nietypowość wyrzuca nas z obszaru statystyki.

 

Edited by thikim

Share this post


Link to post
Share on other sites

Ee nieee, bont ;)

Fakt, że przypadek jest nietypowy, nie oznacza, że nie można oceniać pdp przyczyn:
1. galaktyki zajmują bardzo mały ułamek objętości W,,
2. ogromna wiekszość gwiazd siedzi w galaktykach, ale...
3. zdarza się, że niektóre (niewiele) zostają z nich wyrzucone,
4. te wyrzucone muszą mieć odpowiednią prędkość, większą od prędkości ucieczki,
5. żeby taka szybka gwiazda została wciągnięta prez galaktykę, musi mieć trajektorię bardzo bliską galaktyci i pod odpowiednim kątem,
6. nawet kiedy założymy, że 5. będzie spełnione, to bardziej pdp jest, że zostanie w galaktyce uwięziona, niż przez nią się przebije albo znowu zostanie wyrzucona.
Do tego można wsadzić odpowiednie liczby, ale nawet bardzo ostrożna prowizorka pokazuje, że 3 + 6 jest znacznie mniej pdp niż samo 3.
 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu najszybciej poruszającej się gwiazdy w Drodze Mlecznej. Jej prędkość względem centrum naszej galaktyki wynosi ponad 6 000 000 km/h. Przed około 5 milionami lat ta hiperprędkościowa gwiazda znajdowała się w centrum Drogi Mlecznej. Została stamtąd wyrzucona przez czarną dziurę. Gwiazda ma prędkość, która pozwala jej opuścić Galaktykę.
      Gwiazda S5-HVS1 jest dwukrotnie bardziej masywna od Słońca i dostarcza pierwszych mocnych dowodów na poparcie liczącej sobie 30 lat teorii mówiącej, że czarne dziury mogą przyspieszyć gwiazdy do hiperprędkości pozwalających an opuszczenie naszej galaktyki, mówi główny autor badań, profesor Daniel Zucker.
      Centrum Galaktyki to wir składający się z obiektów krążących wokół czarnej dziury i w nią wpadających. Wydaje się, że tworzą się tam też gwiazdy. To dziwaczne miejsce, które trudno badać, gdyż pomiędzy nim a nami znajduje się dużo pyłu. Może je obserwować w podczerwieni i w zakresie fal radiowych, ale już niekoniecznie w świetle widzialnym, dodaje uczony. Teraz odkryliśmy gwiazdę, która prawdopodobnie w tym miejscu się uformowała i z niego uciekła. Obecnie znajduje się w odległości 29 000 lat świetlnych od Ziemi. To wystarczająco blisko, byśmy mogli ją dość szczegółowo badać. Gwiazda wydaje się zwyczajna. Powinna nam sporo powiedzieć o gwiazdach powstających w pobliżu centrum Galaktyki i o warunkach tam panujących.
      S5-HSV1 należy do ciągu głównego gwiazd, podobnie jak Słońce i większość innych gwiazd. Liczy sobie około 500 milionów lat, czyli jest w połowie życia. Przez 495 milionów lat stanowiła część układu podwójnego. W pewnym momencie znalazł się on zbyt blisko Saggitariusa A*, czarnej dziury w środku Drogi Mlecznej. Zgodnie z obowiązującymi teoriami, czarna dziura musiała przechwycić jedną z gwiazd, którą w końcu wchłonęła, a S5-HSV1 została wystrzelona z prędkością 1800 km/s.
      Pierwszą gwiazdę hiperprędkościową odkryto w 2005 roku. Do dzisiaj poznaliśmy zaledwie kilkadziesiąt takich obiektów, a przed kilku laty donosiliśmy o odkryciu nowej klasy gwiazd hiperprędkościowych, odkryciu pierwszego hiperprędkościowego układu podwójnego i o tajemniczej hiperprędkościowej gwieździe LAMOST-HVS.
      S5-HVS1 w końcu opuści Drogę Mleczną. Nie nastąpi to jednak zbyt szybko przebycie 1 roku świetlnego zajmuje jej bowiem 180 lat.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarna dziura, która znajduje się w centrum naszej galaktyki, w ciągu zaledwie dwóch godzin zwiększyła swoją jasność 75-krotnie. Naukowcy sądzą, że Sagittarius A* była jeszcze jaśniejsza, nim zaczęli się jej przyglądać. Jeszcze nigdy w historii 20-letnich obserwacji nie zanotowano tak dużej jasności tej czarnej dziury. To jednocześnie największa zaobserwowana zmiana.
      Obserwacji dokonał Tuan Do z Keck Observatory. Początkowo sądził, że wyjątkowo jasny punkt, który pojawił się na odczytach to pobliska gwiazda S0-2, jednak szybko zdał sobie sprawę, że to co obserwuje, to rosnąca jasność czarnej dziury.
      To było dziwne. Nigdy wcześniej nie widziałem tak jasnej czarnej dziury. Może wpada w nią więcej gazu, przez co staje się bardziej jasna niż kiedyś?, zastanawia się uczony. W ubiegłym roku gwiazda S0-2 wędrowała w pobliżu Sagittariusa A*, co mogło zaburzyć gaz znajdujący się w okolicy i spowodowało, że więcej go trafia do dziury, a być może zwiększanie jasności jest związane z tajemniczą chmurą gazu i pyłu zwaną G2, którą zaobserwowano w 2014 roku. Już wówczas spodziewano się zwiększenia aktywności i fajerwerków, ale nic takiego nie nastąpiło. Astronomowie byli wówczas rozczarowani. Być może, jak mówi Do, coś opóźniło tę chmurę.
      Sagittarius A* ma wkrótce zostać zobrazowana przez Event Horizon Telescope. W kwietniu wykonał on pierwsze w historii ludzkości zdjęcie czarnej dziury. Była to M87. Gdy w końcu zobaczymy dokładniejszy obraz centralnej dziury Drogi Mlecznej będziemy mogli o niej więcej powiedzieć.
      Oczywiście obserwowane światło, które zwiększyło jasność, nie pochodzi z samej czarnej dziury, a z towarzyszącego jej dysku akrecyjnego. To dysk materii krążącej wokół czarnej dziury, który jest podgrzewany wskutek jej oddziaływania i zaczyna emitować promieniowanie elektromagnetyczne. To właśnie nagłe zwiększenie jego jasności zaobserwował Do.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy Galileusz skierował swój pierwszy teleskop w kierunku Drogi Mlecznej, dostrzegł, że składa się ona z niezliczonej liczby gwiazd. Od tego czasu badania historii i własności Galaktyki pochłaniały wiele pokoleń naukowców. W najnowszym numerze amerykańskiego tygodnika Science zespół polskich astronomów z Obserwatorium Astronomicznego UW, pracujący w ramach projektu The Optical Gravitational Lensing Experiment (OGLE), prezentuje unikalną, trójwymiarową mapę Drogi Mlecznej. Mapa przedstawia precyzyjny obraz naszej Galaktyki i dostarcza wielu nowych informacji dotyczących budowy i historii systemu gwiazdowego, w którym mieszkamy.
      Od XVII wieku astronomowie zdawali sobie sprawę, że Ziemia, Słońce i inne planety z Układu Słonecznego wraz z miliardami gwiazd widocznych przez teleskopy tworzą naszą Galaktykę. Światło tych gwiazd, obserwowane z dala od świateł cywilizacji, zlewa się, przybierając kształt rozlanego na niebie mleka, tworząc Drogą Mleczną. Opisanie rzeczywistego kształtu oraz budowy i struktury Galaktyki na podstawie obserwacji pochodzących z jej wnętrza nie jest zadaniem łatwym.
      Astronomowie wyobrażają sobie Galaktykę jako typową galaktykę spiralną z tzw. poprzeczką, składającą się z centralnego zgrubienia zawierającego owalną poprzeczkę otoczonego płaskim dyskiem zbudowanym z gazu, pyłu i gwiazd. Dysk składa się z czterech ramion spiralnych, a jego średnica wynosi około 120 tys. lat świetlnych. Układ Słoneczny znajduje się wewnątrz dysku w odległości około 27 tys. lat świetnych od centrum Galaktyki. Dlatego gwiazdy dysku oglądane z tego miejsca wyglądają na niebie jak cienka, blada poświata – pas Drogi Mlecznej.
      Aktualna wiedza dotycząca budowy Galaktyki opiera się m. in. na zliczeniach gwiazd, radiowych badaniach rozmieszczenia cząsteczek gazu w Galaktyce, a także analizie obrazów innych galaktyk, które widzimy z zewnątrz. Jednak zawsze dotąd odległości do badanych obiektów mających opisać budowę Galaktyki wyznaczane były pośrednio oraz były mocno zależne od przyjętych modeli. Najdokładniejszą metodą poznania struktury Galaktyki byłoby więc wyznaczenie precyzyjnych odległości do dużej grupy gwiazd o podobnych własnościach, dzięki czemu zobaczylibyśmy bezpośrednio ich rozmieszczenie w Galaktyce w trzech wymiarach.
      Obiektami idealnymi do mapowania Drogi Mlecznej są stosunkowo młode (młodsze niż 250 mln lat) gwiazdy zwane cefeidami klasycznymi. Są to pulsujące nadolbrzymy, których jasność zmienia się w bardzo regularny sposób z okresem od kilkunastu godzin do kilkudziesięciu dni.
      Na podstawie okresu pulsacji możemy wyznaczyć jasność rzeczywistą cefeidy i porównując ją z jasnością obserwowaną gwiazdy obliczamy precyzyjnie jej odległość – objaśnia dr Dorota Skowron, liderka zespołu przygotowującego mapę Galaktyki, pierwsza autorka pracy. Pewnym utrudnieniem w uzyskaniu dokładnych wyników jest pochłanianie światła na drodze od gwiazdy do obserwatora ziemskiego, ale astronomowie radzą sobie z tym problemem przez wykonywanie obserwacji w zakresie promieniowania podczerwonego, gdzie pochłanianie jest bardzo małe. Odległości do cefeid można wyznaczyć z dokładnością lepszą niż 5% – dodaje.
      Unikatowa mapa Drogi Mlecznej
      Najnowsza mapa Galaktyki zespołu OGLE prezentowana w czasopiśmie Science powstała na podstawie danych dotyczących ponad 2400 cefeid. Większość z nich to nowo odkryte obiekty dzięki obserwacjom prowadzonym w ramach projektu OGLE, w Obserwatorium Las Campanas w Chile.
      Projekt OGLE to jeden z największych na świecie przeglądów fotometrycznych nieba, obserwuje regularnie ponad dwa miliardy gwiazd. Kolekcje różnorodnych typów gwiazd zmiennych, w tym cefeid z Galaktyki i sąsiednich Obłoków Magellana, należą do największych we współczesnej astrofizyce i są podstawą do różnorodnych badań Wszechświata – wyjaśnia kierownik projektu OGLE, prof. Andrzej Udalski.
      Skonstruowana na podstawie analizowanych cefeid mapa pokazuje rzeczywiste rozmieszczenie młodej populacji gwiazdowej w Galaktyce. Jest to pierwsza trójwymiarowa mapa stworzona na podstawie bezpośrednich odległości wyznaczonych do poszczególnych obiektów. Precyzyjnie wyznaczone odległości cefeid wypełniających dysk galaktyczny, aż po jego krańce, umożliwiają dokładną analizę budowy dysku galaktycznego. Słońce znajduje się około 50 lat świetlnych powyżej płaszczyzny dysku. Mapa pokazuje, że dysk galaktyczny jest płaski do odległości 25 tys. lat świetlnych od centrum Galaktyki, a w dalszych odległościach ulega zakrzywieniu (disk warp).
      Zakrzywienie dysku podejrzewano już wiele lat temu, ale dopiero teraz po raz pierwszy możemy użyć indywidualnych obiektów do badania jego kształtu w trzech wymiarach – wyjaśnia Przemek Mróz, doktorant UW, badający parametry dysku Galaktyki. Gwiazdy w zewnętrznych częściach dysku Drogi Mlecznej mogą być przesunięte nawet o 4,5 tys. lat świetlnych od płaszczyzny dysku wyznaczonej w centralnych rejonach Galaktyki. Zakrzywienie dysku może być spowodowane oddziaływaniami z innymi galaktykami, wpływem gazu międzygalaktycznego lub tzw. ciemnej materii.
      Dysk galaktyczny nie ma stałej grubości. Rozszerzanie dysku (disk flaring) zostało w przypadku młodej populacji gwiazd Galaktyki po raz pierwszy tak dokładnie scharakteryzowane. Grubość dysku galaktycznego wynosi około 500 lat świetlnych w odległości Słońca i osiąga ponad 3 tys. na samych krańcach dysku.
      Wyznaczenie precyzyjnych odległości do tak licznej próbki cefeid w połączeniu z pomiarami ich prędkości z satelity Gaia umożliwiły również skonstruowanie dokładnej krzywej rotacji Galaktyki – zależności prędkości orbitalnej gwiazd wokół centrum Galaktyki od ich odległości od środka.
      Nasza krzywa rotacji Galaktyki sięga daleko poza zakres dotychczasowych badań i potwierdza stałą prędkość orbitalną gwiazd, praktycznie aż do granic dysku – dodaje Przemek Mróz. Taki jej kształt jest jednym z podstawowych argumentów na rzecz istnienia tzw. ciemnej materii w Galaktyce.
      Wiek cefeid skorelowany jest z ich okresem pulsacji. Na tej podstawie można wykonać tomografię wieku cefeid z Galaktyki. Okazuje się, że szereg wyraźnych struktur widocznych na mapie ma podobny wiek. Cefeidy młodsze znajdują się bliżej centrum Galaktyki, a najstarsze na jej krańcach.
      Zbliżony wiek struktur wskazuje, że musiały one powstać w podobnym momencie w przeszłości, w jednym z ramion spiralnych Galaktyki. Ich dzisiejsze rozmieszczenie w dysku i częściowe rozmycie jest wynikiem różnej prędkości rotacji w Galaktyce ramion spiralnych (gazowych struktur, w których młode gwiazdy, m.in. cefeidy, powstają) oraz rotacji gwiazd – zauważa dr Jan Skowron, współautor pracy w tygodniku Science.
      Aby przetestować tę hipotezę, skonstruowany został prosty model powstawania poszczególnych struktur. W ramiona spiralne Galaktyki wstawiono epizody formowania się gwiazd w różnych momentach w przeszłości i powstającym gwiazdom przypisano typowe ruchy własne oraz prędkość rotacji. Sprawdzano jak powstające miliony lat temu we fragmentach ramion spiralnych cefeidy będą usytuowane w dzisiejszej Galaktyce.
      Symulowane i obserwowane struktury w Galaktyce są uderzająco podobne. Możemy więc stwierdzić, że nasz model historii dysku galaktycznego jest możliwy i jest w stanie objaśnić dzisiejsze struktury jakie w nim widzimy – podsumowuje wyniki modelowania dr Jan Skowron.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.
      Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.
      Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.
      Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.
      Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.

      « powrót do artykułu
×
×
  • Create New...