Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje.

W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu.

Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji.

Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć.

Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych.

Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe.

Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary.

Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A więc mamy pierwszą antygrawitację. Dziwi mnie że nikogo tutaj nie ma, przecież po raz pierwszy ktoś postuluje i jest tego pewien że COŚ może mieć UJEMNĄ MASĘ.

Czy więc Wszechświat wypełnia  ECHO?

Czy najstarsza legenda opisująca jak narodził się WSZECHŚWIAT jest prawdziwa?  - "Świat powstał gdy nad MORZEM CHAOSU (Morze Diraca?) czyli FLUKTUUJĄCĄ PRÓŻNIĄ leciała CZAPLA i GŁOŚNO ZAŁKAŁA.

Co symbolizuje czapla? - POŚWIĘCENIE, ODDANIE ŻYCIA ZA POTOMSTWO (czapla karmi swoje młode krwią z rany na swoim boku którą sama zrobiła). 

Aha ... to nie rozprawa o religiach, tylko hacking :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 hours ago, Tomasz Winter said:

Dziwi mnie że nikogo tutaj nie ma

No bo na razie raczej nie ma się czym za bardzo podniecać ;)

6 hours ago, Tomasz Winter said:

przecież po raz pierwszy ktoś postuluje i jest tego pewien że COŚ może mieć UJEMNĄ MASĘ

Nie po raz pierwszy, a cztery tysiące siedemst pięćdziesiąty drugi (a może trzeci, straciłem już rachubę)...
No i to "coś" jest dosyć szczególne. Fonony to kwazicząstki, czyli "kwanty" makroskopowych zachowań kolektywnych. Mogą one mieć różne dziwne właściwości, których nie mają "normalne" kwanty (cząstki), te nie "kwazi".
Po drugie, zostały użyte założenia i formalizm pewnej dosyć szczególnej teorii pól. Czy słusznie? Może tak, a może nie. Przy innych założeniach i formalizmie wynik być może by był inny.
Po trzecie, co prawda nie wchodziłem w szczegóły, ale podejrzewam, i raczej sie nie mylę, że ta ujemna masa grawitacyjna fononów (jeśli faktycznie taka jest) jest uzyskiwana kosztem czegoś, czyli że jest tu efekt z grubsza przyrównując taki, jak ten, kiedy gruby siada na huśtawce (takiej z deski), na której po drugiej stronie siedzi chudy. Ten chudy też w tym momencie uzyska "ujemną" masę grawitacyjną. Tutaj tym grubasem by mogła być np. energia/pęd atomów (molekuł) tworzących falę akustyczną. Co oczywiście nie znaczy, że sprawa nie jest ciekawa.
A po czwarte, nie wszystkie nawet najbardziej poprawne wyliczenia teoretyczne są "fizyczne", w tym sensie, że mają fizyczną reprezentację.

Jak ktoś chce się zabawić, to oryginał jest tu:
https://arxiv.org/pdf/1807.08771.pdf

Edytowane przez ex nihilo
  • Lubię to (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 20.03.2019 o 05:10, ex nihilo napisał:

 

Cytat

No bo na razie raczej nie ma się czym za bardzo podniecać ;)

Niby tak, niby quasi cząstki, ale oni postulują że efekty są fizycznie mierzalne. Ciekawy byłby eksperyment z dziedziczeniem składowej pędu. Wydaje mi się że można to dosyć szybko zweryfikować nie uciekając się do ciekłego helu lecz do propagacji fal dźwiękowych np. w rurach z rtęcią. Przy odpowiednio dobranych częstotliwościach interferencja dałaby jednoznaczną odpowiedź.

Nie sugeruje bynajmniej że masa jest ujemną "za darmo".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie miałem czasu, żeby się w to wkopać, ale podejrzewam, że efekt byłby taki, że fonony (fala) pójdą w górę a molekuły ośrodka w dół (na powierzchni Ziemi), czyli całość się zrównoważy do stanu takiego, jakby fonony miały zerową masę grawitacyjną.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 22.03.2019 o 05:52, ex nihilo napisał:

Nie miałem czasu, żeby się w to wkopać, ale podejrzewam, że efekt byłby taki, że fonony (fala) pójdą w górę a molekuły ośrodka w dół (na powierzchni Ziemi), czyli całość się zrównoważy do stanu takiego, jakby fonony miały zerową masę grawitacyjną.

Tak jak powyżej napisał ex nihilo fala dźwiękowa poruszając się w ośrodku wprawia w ruch cząstki tego ośrodka, które nabywają w związku z tym masę relatywistyczną a ta powoduje zwiększenie oddziaływania grawitacyjnego i ruch cząstek w dół dlatego fonon leci do góry by to zrównoważyć :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ćmy decydują o tym, gdzie złożyć jaja na podstawie... dźwięków wydawanych przez rośliny – donoszą naukowcy z Uniwersytetu w Tel Awiwie. Okazuje się zatem, że nie tylko rośliny modyfikują swoje zachowanie, odbierając dźwięki wydawane przez owady – o czym pisaliśmy niedawno – ale również zwierzęta reagują na dźwięki wydawane przez rośliny. I podejmują na tej podstawie jedne z najważniejszych decyzji w ich życiu.
      Izraelscy naukowcy z laboratoriów profesora Yossiego Yovela i profesor Lilach Hadany już przed dwoma laty odkryli, że zestresowane w wyniku niekorzystnych warunków środowiskowych rośliny emitują ultradźwięki. Wiele gatunków zwierząt jest w stanie je usłyszeć. Odkrycie to otworzyło nowe pole badawcze dotyczące akustycznej interakcji pomiędzy roślinami a zwierzętami.
      Profesor Yovel i jego zespół wysunęli hipotezę że skoro rośliny wydają dźwięki słyszalne przez zwierzęta, to być może zwierzęta reagują na te dźwięki i odpowiednio się zachowują. Naukowcy skupili się więc na samicach ciem składających jaja na roślinach. Założyli, że owady będą chciały składać jaja na zdrowych roślinach, by larwy po wykluciu się miały dostęp do jak najlepszego pożywienia. Postanowili więc sprawdzić, czy owady złożą jaja na roślinach, które wydają dźwięki świadczące o tym, iż brakuje im wody.
      W pierwszym eksperymencie, chcąc wyizolować element akustyczny od optycznego i zapachowego, naukowcy skonfrontowali ćmy z dwoma pudełkami. W jednym znajdował się głośnik odtwarzający dźwięk odwodnionego krzaku pomidora, z drugiego pudełka nie wydobywały się żadne dźwięki. Ćmy wyraźnie wybierały pudełko z głośnikiem, interpretując je jako żywą roślinę. To wskazało, że zwierzęta odbierają dźwięki wydawane przez rośliny i reagują na nie. Gdy bowiem naukowcy zneutralizowali organy ciem odpowiadające za odbieranie dźwięków, zwierzęta zaczęły traktować oba pudełka jednakowo, co pokazało, że ich preferencje opierały się właśnie na dźwięku, a nie innych sygnałach.
      W drugim eksperymencie ćmy miały do czynienia z dwoma zdrowymi krzakami pomidorów. Przy jednym z nich ustawiono głośnik wydający dźwięki zestresowanej rośliny, drugi krzak nie wydawał dźwięków. Ćmy wybierały cichą roślinę. Najwyraźniej uznały ją za zdrową, a więc lepsze miejsce do złożenia jaj.
      Podczas trzeciego eksperymentu samice znowu miały do czynienia z dwoma pudełkami. W jednym znajdował się samiec, który emituje ultradźwięki podobne do tych emitowanych przez rośliny. W tym przypadku samice nie wykazywały żadnych preferencji i składały jaja na obu pudełkach.
      Na podstawie tak przeprowadzonych badań naukowcy stwierdzili, że samice reagują na dźwięki wydawane przez rośliny i na tej podstawie decydują o miejscu złożenia jaj. Jesteśmy przekonani, że to dopiero początek. Interakcje akustyczne pomiędzy roślinami a zwierzętami są bez wątpienia znacznie bardziej bogate, stwierdzają badacze.
      Źródło: Female Moths Incorporate Plant Acoustic Emissions into Their Oviposition Decision-Making Process, https://elifesciences.org/reviewed-preprints/104700

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
      Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
      Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
      Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
      Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
      High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
      Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Masa neutrina jest co najmniej milion razy mniejsza niż masa elektronu, informują naukowcy z Karlsruhe Tritium Neutrino (KATRIN). Badania określiły nową górną granicę możliwej masy neutrino na podstawie 36 milionów pomiarów. Dzięki nim wiemy, że wynosi ona nie więcej niż 0,45 elektronowolta (eV). Masa elektronu, kolejnej z najlżejszych cząstek elementarnych, to 511 000 elektronowoltów.
      Neutrino jest jedyną cząstką elementarną, której masy nie znamy. Zdobycie wiedzy na jej temat pozwoli na zbadanie, w jaki sposób neutrina nabywają masę. Czy – jak inne cząstki – dzięki oddziaływaniu z polem Higgsa, czy też w jakiś inny, nieznany dotychczas sposób. Poznanie masy neutrino powinno też zdradzić, w jaki sposób neutrina narodziły się w czasie Wielkiego Wybuchu i jak wpłynęły na formowanie się galaktyk.
      Nowa górna granica masy oznacza doprecyzowanie wcześniejszych badań przeprowadzonych przez KATRIN. W 2022 roku naukowcy pracujący przy tym eksperymencie stwierdzili, że górną granicą masy neutrino jest 0,8 eV. Teraz międzynarodowy zespół złożony z ponad 140 naukowców przeanalizował dane z 259 dni pracy KATRIN i jeszcze bardziej doprecyzował pomiary.
      Eksperyment KATRIN Collaboration wykorzystuje rozpad beta trytu. Podczas niego dochodzi do emisji elektronu i antyneutrina. Antycząstki mają taką samą masę jak odpowiadające im cząstki, więc badania antyneutrina pozwalają określić masę neutrina. Jednak neutrina niemal nie wchodzą w interakcje z materią. Ich badanie (i badanie antyneutrin) jest niezwykle trudne. W ramach eksperymentu KATRIN badany jest więc elektron, nie neutrino.
      Rozpad beta trytu to jeden z najmniej energetycznych rozpadów beta. Emitowane w jego trakcie elektron i neutrino unoszą łącznie 18,6 keV energii. Elektron trafia do 200-tonowego spektroskopu długości 23 metrów, o którego niezwykłym transporcie na miejsce montażu informowaliśmy kilka lat temu. Spektroskop bada widmo energii elektronu, jeśli precyzyjnie je poznamy, będziemy wiedzieli ile brakuje ze wspomnianych 18,6 keV, zatem ile energii przypadło na neutrino. Brzmi to prosto, ale jest niezwykle skomplikowanym zadaniem.
      Eksperyment KATRIN zakończy działanie jeszcze w bieżącym roku. Naukowcy będą wówczas dysponowali danymi zebranymi z 1000 dni. Spodziewają się, że obniżą górną granicę masy neutrino do 0,3 eV, a może nawet do 0,2 eV. To i dobra, i zła wiadomość. Coraz lepiej poznajemy bowiem masę neutrino, ale nie znamy jej dokładnej wartości. Gdyby było to bliżej 1 eV, to eksperymenty takie jak KATRIN mogłyby dać nam ostateczną odpowiedź. Jednak teraz wiemy już, że potrzebne będą znacznie bardziej precyzyjne urządzenia, niż te, którymi obecnie dysponujemy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jednym z najważniejszych czynników, który znacząco oddziałuje na wycenę diamentu, jest jego masa wyrażona w karatach. Karat, oznaczany skrótem kt, to specyficzna jednostka miary, używana do określania wielkości diamentów oraz innych kamieni szlachetnych.
      Historia i pochodzenie jednostki karat
      Jednostka miary, jaką jest karat, pełni istotną funkcję w branży jubilerskiej, zwłaszcza w przypadku diamentów i innych kamieni szlachetnych. Nazwa „karat” pochodzi od drzewa zwanego szarańczyn strąkowy, znanego również jako karob. W starożytności, na Bliskim Wschodzie, nasiona karobu były używane jako odważniki do ważenia kamieni szlachetnych, ponieważ cechowały się one niezwykłą regularnością masy – każde ziarno ważyło około 0,2 grama. To właśnie ta właściwość sprawiła, że nasiona te stały się podstawą do określenia jednostki masy kamieni szlachetnych, która przetrwała do dziś.
      Karat jako miara masy diamentów
      W jubilerstwie karat metryczny (ct) jest standardową jednostką miary masy diamentów. Jeden karat odpowiada 200 miligramom, czyli 0,2 grama. Warto zauważyć, że choć karat określa wagę kamienia, nie odnosi się bezpośrednio do jego wielkości. Dwa diamenty o tej samej masie mogą mieć różne wymiary, w zależności od ich gęstości, kształtu i szlifu. Dlatego karat jest tylko jednym z wielu czynników, które wpływają na ocenę i wycenę diamentów.
      Zasada 4C – karat jako jeden z najważniejszych parametrów
      Karat jest jednym z czterech podstawowych kryteriów, znanych jako zasada 4C, które mają decydujący wpływ na wartość diamentu. Oprócz masy, na cenę diamentu wpływają także jego czystość, kolor i szlif, które wspólnie determinują jakość i piękno kamienia.
      W przypadku diamentów o większej masie nawet niewielka różnica w wadze może znacząco podnieść ich wartość, co jest szczególnie istotne przy ocenie rzadkich i dużych egzemplarzy. Dlatego precyzyjne określenie masy jest niezwykle ważne w procesie wyceny kamienia, a dokładność pomiaru jest niezwykle ważna, aby zapewnić sprawiedliwą ocenę jego wartości rynkowej. Co więcej, waga w karatach jest jednym z parametrów, który jest szczególnie brany pod uwagę przez kolekcjonerów i inwestorów, poszukujących diamentów o wyjątkowej jakości.
      Przykłady i znaczenie masy diamentu
      Największy diament, jaki kiedykolwiek odkryto – Cullinan – miał imponującą masę 3106 karatów, co odpowiada około 621,2 gramom. Diamenty o tak ogromnej masie są niezwykle rzadkie i stanowią nie tylko skarb o ogromnej wartości historycznej, ale także finansowej, często stając się obiektem zainteresowania kolekcjonerów i muzeów na całym świecie.
      Warto również wspomnieć, że masa diamentu jest precyzyjnie mierzona i podawana z dokładnością do dwóch miejsc po przecinku, co pozwala na bardzo dokładne określenie jego wagi, a tym samym znacząco wpływa na jego wycenę. Ta precyzja jest istotna, zwłaszcza przy obrocie diamentami, gdzie nawet najmniejsza różnica w masie może prowadzić do znacznych różnic w cenie biżuterii, podkreślając tym samym unikalność każdego egzemplarza.
      Gdzie najlepiej kupować diamenty?
      Diamenty najlepiej kupować w renomowanych i zaufanych sklepach jubilerskich, które oferują certyfikowane kamienie szlachetne. Certyfikaty, takie jak te wydawane przez GIA (Gemological Institute of America), gwarantują autentyczność i jakość diamentu. Można również rozważyć zakup diamentów na aukcjach, które często oferują unikatowe i rzadkie egzemplarze. Godnym polecenia miejscem do zakupu diamentów jest atelier House of Diamond, które oferuje diamenty i biżuterię najwyższej jakości, opatrzone certyfikatami GIA lub IGI.
      Ważne jest, aby unikać zakupów od niezweryfikowanych sprzedawców, szczególnie online, gdzie ryzyko oszustwa jest wyższe. Najważniejsze jest upewnienie się, że sprzedawca jest godny zaufania, a diament posiada pełną dokumentację, co zapewnia bezpieczeństwo inwestycji.
      Podsumowując, masa diamentów jest określana w karatach, jednostce miary, która ma swoje korzenie w starożytnych metodach ważenia kamieni szlachetnych na Bliskim Wschodzie. Dziś karat jest międzynarodowym standardem w branży jubilerskiej, a jego precyzyjne określenie ma ogromne znaczenie dla wyceny diamentów. Warto pamiętać, że diamenty o większej masie są nie tylko bardziej wartościowe, ale także trudniejsze do znalezienia, co dodatkowo podnosi ich cenę na rynku jubilerskim.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...