
Odkryto nieznaną dotychczas podstawową stałą Słońca
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Solar Orbiter, misja Europejskiej Agencji Kosmicznej, wyróżniła dwa rodzaje wysokoenergetycznych cząstek wystrzeliwanych ze Słońca i wyśledziła źródła obu rodzajów. O ile oba typy były znane już wcześniej, teraz dzięki misji ESA wiemy, skąd się one biorą i jak powstają. W ten sposób dodatkowo poszerzyliśmy naszą wiedzę o Słońcu, największym akceleratorze cząstek w Układzie Słonecznym, który decyduje o tym, co dzieje się na Ziemi i wokół niej.
Wysokoenergetyczne elektrony pochodzące ze Słońca mają dwa źródła. Jednym są rozbłyski słoneczne, czyli eksplozje mające miejsce na niewielkich obszarach, a drugim źródłem są koronalne wyrzuty masy, czyli duże erupcje. Widzimy wyraźną różnicę pomiędzy gwałtownymi impulsami, gdy wysokoenergetyczne elektrony są wyrzucane z powierzchni Słońca oraz stopniowo rozwijającymi się erupcjami, w wyniku których przez dłuższy czas wyrzucane są różnorodne cząstki, mówi główny autor badań Alexander Warmuth z Instytutu Astrofizyki im. Leibniza w Poczdamie. Teraz mogliśmy podlecieć na tyle blisko Słońca, by zbadać te cząstki na wczesnym etapie powstawania i dokładnie określić czas i miejsce ich narodzin na Słońcu, dodaje uczony.
W czasie badań wykorzystano 8 z 10 instrumentów naukowych Solar Orbitera, a dane zbierano od listopada 2020 do grudnia 2022. Pojazd mierzył cząstki in situ, przelatując przez ich strumienie i jednocześnie obserwując to, co dzieje się na Słońcu oraz zbierając informacje na temat obszaru pomiędzy Słońcem a sobą samym. Orbiter badał cząstki w różnych odległościach od Słońca, co pozwoliło odpowiedzieć na wiele pytań ich dotyczących. Często bowiem, gdy obserwujemy rozbłysk czy koronalny wyrzut masy mija bardzo dużo czasu, zanim wykryjemy wysokoenergetyczne elektrony. Okazuje się, że częściowo dzieje się tak przez sposób ich podróżowania w przestrzeni. Może być to spowodowane opóźnieniem w wystrzeleniu elektronów, ale również opóźnieniem w ich wykryciu. Elektrony na swojej drodze napotykają różne turbulencje, zostają rozproszone itp. itd. A tego typu przeszkody mnożą się, im dalej jesteśmy od Słońca. Więc nie wykrywamy elektronów natychmiast, dodaje Laura Rodríguez-García.
Musimy pamiętać, że przestrzeń w Układzie Słonecznym nie jest pusta. Wypełniona jest wiatrem słonecznym, który niesie ze sobą pole magnetyczne Słońca. Decyduje on, w jaki sposób mogą rozprzestrzeniać się elektrony. Nie podróżują one swobodnie, o tym, jak się przemieszczają decyduje wiatr słoneczny i pole magnetyczne.
Zdobyta właśnie wiedza może okazać się w przyszłości ważna dla bezpieczeństwa na Ziemi i wokół niej. Elektrony związane z koronalnymi wyrzutami masy są zagrożeniem dla satelitów, pojazdów kosmicznych i astronautów. Lepsze zrozumienie tych cząstek pozwoli w przyszłości na stosowanie lepszych metod ochrony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiadomo że rośliny i zwierzęta wydają dźwięki, reagują na nie i za ich pomocą się komunikują. Komunikacja taka zachodzi też pomiędzy zwierzętami a roślinami i odwrotnie. Czy jednak organizmy należące do innych królestw domeny eukariontów w jakiś sposób reagują na dźwięki? Okazuje się, że tak. Reakcję taką zauważono u drożdży piwowarskich. Co więcej można to wykorzystać w produkcji złocistego napoju.
Naukowcy z nowozelandzkiego Uniwersytetu w Otago donoszą, że odtwarzanie szumu białego – rodzaju szumu akustycznego – podczas warzenia piwa pozwala skrócić proces produkcji złocistego napoju. Z badań przeprowadzonych pod kierunkiem doktora Parise'a Adadiego wynika, ze dzięki białemu szumowi proces fermentacji można skrócić o 21 do 31 godzin bez pogarszania jakości napoju. W ten sposób browary mogą znacząco zwiększyć produkcję.
Naukowcy wykorzystali aktuator liniowy, który generował biały szum w zakresie 800–2000 Hz o głośności 140 dB. Zastosowanie stymulacji dźwiękowej zwiększyło wzrost drożdży poprzez utrzymywanie wyższego stężenia komórek drożdży w zawiesinie. Energia dźwiękowa pobudzała procesy komórkowe i szlaki metaboliczne, wzmacniając wzrost i aktywność drożdży. To prowadziło do szybszego zużywania cukrów z brzeczki i wytwarzania alkoholu, ale co istotne – nie zmieniało w sposób istotny składu smakowego gotowego piwa, stwierdził doktor Adadi.
Szczegółowy opis eksperymentu został opublikowany na łamach Food Research International.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ewolucja roślin i ich zapylaczy jest zwykle badana pod kątem sygnałów optycznych i chemicznych. Nauka analizowała, jak i co widzą zapylacze, jakie sygnały chemiczne odbierają oraz w jaki sposób rośliny wykorzystują kolor, kształt oraz substancje chemiczne, by przyciągnąć zapylaczy. Nauka wie też, że zarówno zwierzęta, jak i rośliny, są zdolne do wytwarzania oraz odbierania sygnałów akustycznych. Francesca Barbero z Uniwersytetu w Turynie oraz jej zespół składający się z entomologów, inżynierów dźwięku i fizjologów roślin, postanowili sprawdzić, czy w jakiś sposób rośliny i zapylacze mogą się nawzajem słyszeć i na siebie reagować.
Naukowcy odtwarzali w pobliżu rosnącego wyżlinu (Antirrhinum) dźwięki wydawane przez zapylającą go makatkę czerwoną i sprawdzali reakcję rośliny. Okazało się, że na sam dźwięk skrzydeł pszczoły, wyżlin zwiększał produkcję cukrów i nektaru, zmieniając przy tym ekspresję genów odpowiedzianych za transport i produkcję tych składników. Zdaniem badaczy, jest to świetny przykład koewolucji roślin i zapylaczy.
Zdolność do odróżniania od siebie zbliżających się zapylaczy na podstawie sygnałów akustycznych przez nich generowanych może być strategią adaptacyjną. Reagując na sygnał zapylacza – na przykład tego najbardziej efektywnego – rośliny mogą zwiększyć swój sukces reprodukcyjny, jeśli doprowadzą do odpowiedniej modyfikacji jego zachowania, mówi Barbero. Dostarczając owadowi więcej cukru czy nektaru, roślina może – na przykład – skłonić go, by dłużej na niej pozostał.
Widzimy tutaj, że dźwięk wydawany przez zapylacza, wpływa na zachowanie rośliny. O wiele trudniej jest sprawdzić oddziaływanie w drugą stronę – czy dźwięki roślin mogą wpłynąć na owady. Na przykład czy mogą one przyciągać wybranych zapylaczy. Jeśli okaże się, że tak, to dźwięki można będzie wykorzystywać do przyciągania zapylaczy do upraw.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Firma TAE Technologies, która od niemal 30 lat prowadzi badania nad fuzją jądrową, ogłosiła, że dokonała znaczącego postępu pod względem wydajności i sprawności reaktora fuzyjnego. Wyniki naszych eksperymentów, opublikowane na łamach recenzowanego pisma Nature Communications, dowodzą, że TAE opracowało taką metodę formowania i optymalizacji plazmy, która zwiększa wydajność, znacząco obniża złożoność i koszty oraz przyspiesza moment, w którym zademonstrujemy pozyskiwanie energii netto i komercyjną fuzję jądrową, czytamy w firmowym oświadczeniu.
Firma twierdzi, że jej ostatnie pracy udowodniły, iż z reaktora, który rozwija, można będzie pozyskać 100-krotnie więcej energii niż z typowego tokamaka korzystającego z pola magnetycznego o tej samej sile, zdolnego do uwięzienia tej samej ilości plazmy. Dodatkowo jej system jest znacznie prostszy, dzięki czemu jest znacznie tańszy w budowie i utrzymaniu.
TAE Technologies powstała w 1998 roku. Przez wiele lat firma unikała rozgłosu, nie zdradzając o sobie zbyt wielu informacji. Witrynę internetową uruchomiła dopiero w 2015 roku. Wiadomo, że w 2021 roku zatrudniała ponad 250 pracowników i zebrała finansowanie w wysokości 880 milionów USD. Jej głównymi sponsorami są Goldman Sachs, Vulcan Inc. (firma założyciela Microsoftu Paula Allena) czy fundusze venture capital jak Venrock i New Enterprise Associates.
TAE Technologies rozwija technologię fuzji aneutronowej za pomocą techniki FRC (Field-Reversed Configuration). Fuzja aneutronowa to rodzaj syntezy termojądrowej, w której bardzo mało energii jest unoszonej przez neutrony. Jest ona znacznie bezpieczniejsza od tradycyjnej fuzji jądrowej, nie wymaga tak dobrego ekranowania, a pozyskana z niej energia jest łatwiejsza do przetworzenia na użyteczny dla nas prąd. Nie ma też ryzyka, że poszczególne elementy reaktora staną się radioaktywne, więc trzeba będzie je w specjalny sposób zabezpieczać, gdy przestaną być używane. Jednak uzyskanie fuzji aneutronowej jest znacznie trudniejsze, wymaga bardziej ekstremalnych warunków, niż w przypadku tradycyjnej fuzji z wykorzystaniem deuteru i trytu.
TAE Technologies ma zamiar wykorzystać w swoim reaktorze paliwo wodorowo-borowe (p-B11). To, zdaniem firmy, najczystsze, najbezpieczniejsze i najbardziej przyjazne środowisku paliwo, jakie można wykorzystać w czasie fuzji.
W technice FRC plazma samodzielnie się organizuje i generuje własne pole magnetyczne wewnątrz reaktora, co znacząco zmniejsza zapotrzebowanie na zewnętrzne magnesy i ułatwia działanie reaktora. Sam reaktor jest też prostszy, więc tańszy i łatwiejszy w budowie czy utrzymaniu. Przełom, ogłoszony przez TAE Technologies, polega na rozwiązaniu wcześniejszych problemów z wygenerowaniem i utrzymaniem plazmy, co osiągnięto dzięki wstrzyknięciu wiązki neutralnej wiązki cząstek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Głęboko pod powierzchnią Morza Śródziemnego znajduje się niezwykła infrastruktura, wykrywacz neutrin KM3NeT. Jedna część znajduje się 30 km od południowych wybrzeży Francji, na głębokości ok. 2500 m i jest zoptymalizowana do pracy z neutrinami o energiach liczonych w gigaelektronowoltach (GeV). Część druga, KM3NeT-It, położona 100 km na wschód od południowych wybrzeży Sycylii, zlokalizowana 3500 m pod powierzchnią, wykrywa neutrina z zakresu tera- i petaelektronowoltów (TeV, PeV). Zarejestrowano tam najbardziej energetyczne neutrino. Jego energia sięgała 220 PeV.
Międzynarodowy zespół naukowy KM3NeT Collaboration poinformował na łamach Nature, o wynikach analiz przeprowadzonych na danych zebranych przez wykrywacze umieszczone na 21 linach wpuszczonych w głąb morza. Infrastruktura w pobliżu Sycylii pracowała w takich konfiguracji pomiędzy końcem września 2022 a połową września 2023, kiedy to dodano 7 kolejnych lin z detektorami. Uczeni przeanalizowali dane z 287 dni pracy KM3NeT. W tym czasie zarejestrowano 110 milionów interakcji. A najpotężniejsze ze znanych neutrin wykrywacze zarejestrowały 13 lutego 2023 roku. Wspomniane już energia 220 PeV to 16 000 razy więcej niż energia najpotężniejszych kolizji, do jakich dochodzi w Wielkim Zderzaczu Hadronów (LHC).
Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje ich nawet 100 bilionów. Nie mają one jednak ładunku elektrycznego i prawie nie posiadają masy. Niezwykle rzadko wchodzą w interakcje z materią. Dlatego do ich wykrywania używa się gigantycznych teleskopów, takich jak KM3NeT. To zespół czujników zawieszonych na linach w głębinach Morza Śródziemnego, które rejestrują promieniowanie Czerenkowa. Gdy neutrino wchodzi w interakcję z jądrem atomu w wodzie morskiej, może powstać mion. W wyniku interakcji jądro atomu-neutrino powstały mion zyskuje tak olbrzymią energię kinetyczną, że gdy przemieszcza się przez wodę, dochodzi do emisji światła. To właśnie jest promieniowanie Czerenkowa, które możemy porównać do gromu dźwiękowego powstającego, gdy samolot przekracza prędkość dźwięku.
Każda z 230 lin składających się na KM3NeT wyposażona jest w 18 modułów optycznych, z których każdy zawiera 31 fotopowielaczy, wykrywających i wzmacniających słabe rozbłyski światła ze wszystkich kierunków. W tym światło generowane przez miony powstające po uderzeniu neutrin w jądra atomowe. Jak więc łatwo się domyślić, dokładając kolejne liny z kolejnymi fotopowielaczami możemy łatwo rozbudowywać KM3NeT, którego objętość będzie wkrótce liczyła wiele kilometrów sześciennych.
KM3NeT wykrywa obecnie neutrina pochodzące z ekstremalnych źródeł i wydarzeń astrofizycznych. Pierwsze zarejestrowanie neutrina o energii w zakresie setek PeV otwiera nowy rozdział w astronomii, stwierdził Paschal Coyle. Łącząc obserwacje z różnych źródeł, poszukujemy związku pomiędzy promieniowaniem kosmicznym, pojawianiem się neutrin oraz supermasywnymi czarnymi dziurami, wyjaśnia Yuri Kovalev z Instytutu Radioastronomii im. Maxa Plancka.
Źródłem wysokoenergetycznych neutrin mogą być zresztą nie tylko supermasywne czarne dziury, ale też supernowe. Najpotężniejsze z zarejestrowanych neutrin może pochodzić z któregoś z tych źródeł. Może być też pierwszym zauważonym neutrino kosmogenicznym. Mogą one powstawać, gdy wysokoenergetyczne promieniowanie kosmiczne wchodzi w interakcję z reliktowymi niskoenergetycznymi fotonami z mikrofalowego promieniowania tła. Jednak, jako że to jedyne neutrino o energii rzędu setek PeV, naukowcy nie są w stanie określić jego źródła.
KM3Net składa się z dwóch wykrywaczy: ARCA w pobliżu Sycylii i ORCA w pobliżu Tulonu. W skład zespołu ARCA wchodzi 230 lin o długości 700 metrów każda, rozmieszczonych w odległości 100 metrów od siebie. ORCA to 115 lin długości 200 metrów w odległości 20 metrów od siebie. Na każdej linie znajduje się 18 modułów optycznych, wyposażonych w 31 fotopowielaczy. Dane z wykrywaczy trafiają do INFN Laboratori Nazionali del Sud w Portopalo di Capo Passero i Laboratoire Sous-marin Provence Méditerranée w La Seyne-sur-Mer.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.