Odkryto nieznaną dotychczas podstawową stałą Słońca
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Analiza ponad 50 000 gwiazd wykazała, że rozbłyski słoneczne mogą być setki razy potężniejsze, niż najsilniejszy rozbłysk kiedykolwiek zanotowany przez astronomów. Na łamach pisma Science badacze z Instytutu Badań Układu Słonecznego im Maxa Plancka poinformowali, że po przebadaniu 56 540 gwiazd doszli do wniosku, że każda z nich średnio co 100 lat doświadcza gigantycznego rozbłysku. Wyniki badań wskazują, że dotychczas potencjał gwiazd był niedoszacowany. Z danych zebranych przez Teleskop Keplera wynika bowiem, że gigantyczne rozbłyski mają miejsce 10-100 razy częściej niż sądzono.
Już wcześniejszych badań wiadomo było, że na Słońcu może dochodzić do potężnych erupcji. Ich ślady znajdowano w prehistorycznych drzewach i lodzie z lodowców. Jednak na podstawie takich źródeł nie można było stwierdzić, jak często tego typu wydarzenia mają miejsce. Bezpośrednie pomiary ilości promieniowania docierającego ze Słońca na Ziemię potrafimy wykonywać dopiero od kilkudziesięciu lat.
Istnieje jednak inny sposób na zdobycie danych na temat długoterminowego zachowania się Słońca. Współczesne teleskopy kosmiczne obserwują tysiące gwiazd i zbierają dane o zmianach ich jasności. W danych tych widać też potężne rozbłyski. Nie możemy obserwować Słońca przez tysiące lat. Możemy jednak badać zachowanie tysięcy gwiazd bardzo podobnych do Słońca w krótkim okresie czasu. To pozwala nam ocenić, jak często dochodzi do superrozbłysków, mówi współautor badań, profesor Sami Solanki.
Naukowcy z Niemiec, Austrii, USA, Japonii, Finlandii i Francji przeanalizowali dane z 56 450 gwiazd dostarczone w latach 2009–2013 przez Teleskop Kosmiczny Keplera. W sumie Kepler dostarczył nam danych z 220 tysięcy lat aktywności słonecznej, wyjaśnia profesor Alexander Shapiro z Uniwersytetu w Grazu.
Kluczowym elementem był dobór gwiazd jak najbardziej podobnych do naszej. Badacze wybrali więc te, których temperatura powierzchni i jasność były jak najbardziej zbliżone. W czasie badań zidentyfikowano 2889 superrozbłysków, które miały miejsce na 2527 gwiazdach spośród 56 450 wybranych. To oznacza, że każda z gwiazd generuje jeden superrozbłysk w ciągu stu lat. To było zaskakujące. Naukowcy nie spodziewali się, że potężne rozbłyski mają miejsce tak często. Dotychczas bowiem, na podstawie dowodów znalezionych na Ziemi, wydawało się, że dochodzi do nich znacznie rzadziej.
Gdy cząstki z potężnego rozbłysku trafią do ziemskiej atmosfery, dochodzi do wytwarzania mierzalnych ilości pierwiastków promieniotwórczych, takich jak węgiel-14. Pierwiastki te trafiają do naturalnych archiwów, jak pierścienie drzew czy lód w lodowcach. Więc informacje o takim wydarzeniu na Słońcu można odczytać tysiące lat później na Ziemi. W ten sposób naukowcom udało się zidentyfikować 5 ekstremalnych wydarzeń tego typu i 3 kandydatów na rozbłyski. Doszło do nich w ciągu ostatnich 12 tysięcy lat. Z tego też powodu sądzono, że Słońce generuje superrozbłyski raz na około 1500 lat. I o ile wiadomo, ostatnie takie wydarzenie miało miejsce w 775 roku.
Wyniki badań mogą niepokoić. O ile w roku 775 wynikiem skierowanego w stronę Ziemi rozbłysku mógł być niewielki wzrost zachorowań na nowotwory skóry, to współczesna cywilizacja techniczna bardzo boleśnie odczułaby skutki takiego wydarzenia.
Już przed kilkunastu laty amerykańskie Narodowe Akademie Nauk opublikowały raport dotyczący ewentualnych skutków olbrzymiego koronalnego wyrzutu masy, który zostałby skierowany w stronę Ziemi. Takie wydarzenie spowodowałoby poważne perturbacje w polu magnetycznym planety, co z kolei wywołałoby przepływ dodatkowej energii w sieciach energetycznych. Nie są one przygotowane na tak gwałtowne zmiany.
Omawiając ten raport, pisaliśmy, że mogłoby dojść do stopienia rdzeni w stacjach transformatorowych i pozbawienia prądu wszystkich odbiorców. Autorzy raportu stwierdzili, że gwałtowny koronalny wyrzut masy mógłby uszkodzić 300 kluczowych transformatorów w USA. W ciągu 90 sekund ponad 130 milionów osób zostałoby pozbawionych prądu. Mieszkańcy wieżowców natychmiast straciliby dostęp do wody pitnej. Reszta mogłaby z niej korzystać jeszcze przez około 12 godzin. Stanęłyby pociągi i metro. Z półek sklepowych błyskawiczne zniknęłaby żywność, gdyż ciężarówki mogłyby dostarczać zaopatrzenie dopóty, dopóki miałyby paliwo w zbiornikach. Pompy na stacjach benzynowych też działają na prąd. Po około 72 godzinach skończyłoby się paliwo w generatorach prądu. Wówczas stanęłyby szpitale.
Najbardziej jednak przerażającą informacją jest ta, iż taki stan mógłby trwać całymi miesiącami lub latami. Uszkodzonych transformatorów nie można naprawić, trzeba je wymienić. To zajmuje zespołowi specjalistów co najmniej tydzień. Z kolei duże zakłady energetyczne mają na podorędziu nie więcej niż 2 grupy odpowiednio przeszkolonych ekspertów. Nawet jeśli część transformatorów zostałaby dość szybko naprawiona, nie wiadomo, czy w sieciach byłby prąd. Większość rurociągów pracuje bowiem dzięki energii elektrycznej. Bez sprawnego transportu w ciągu kilku tygodni również i elektrowniom węglowym skończyłyby się zapasy. Sytuacji nie zmieniłyby też elektrownie atomowe. Są one zaprojektowane tak, by automatycznie wyłączały się w przypadku poważnych awarii sieci energetycznych. Ich uruchomienie nie jest możliwe przed usunięciem awarii.
O tym, że to nie tylko teoretyczne rozważania, świadczy chociażby fakt, że w marcu 1989 roku burza na Słońcu na 9 godzin pozbawiła prądu 6 milionów Kanadyjczyków. Z kolei najpotężniejszym tego typu zjawiskiem, jakie zachowało się w ludzkiej pamięci, było tzw. wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych. Przestały działać telegrafy, doszło do pożarów drewnianych budynków stacji telegraficznych, a w Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety. Igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne było widać nawet w Kolumbii. A pamiętać trzeba, że wydarzenie Carringtona było znacznie słabsze, niż superrozbłyski, o których tutaj mowa.
Obecnie ucierpiałyby nie tylko sieci elektromagnetyczne, ale również łączność internetowa. Na szczególne niebezpieczeństwo narażone byłyby kable podmorskie, a konkretnie zainstalowane w nich wzmacniacze oraz ich uziemienia. Więc nawet gdy już uda się przywrócić zasilanie, problemem będzie funkcjonowanie globalnego internetu, bo naprawić trzeba będzie dziesiątki tysięcy kilometrów kabli.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy i inżynierowie z University of Bristol oraz brytyjskiej Agencji Energii Atomowej (UKAEA) stworzyli pierwszą diamentową baterię z radioaktywnym węglem C-14. Urządzenia tego typu mogą działać przez tysiące lat, stając się niezwykle wytrzymałym źródłem zasilania, które może przydać się w wielu zastosowaniach. Bateria wykorzystuje radioaktywny C-14 do długotrwałego wytwarzania niewielkich ilości energii.
Tego typu źródła zasilania mogłyby trafić do biokompatybilnych urządzeń medycznych jak np. implanty słuchu czy rozruszniki serca, a olbrzymią zaletą ich stosowania byłoby wyeliminowanie konieczności wymiany baterii co jakiś czas. Sprawdziłyby się też w przestrzeni kosmicznej czy ekstremalnych środowiskach na Ziemi, gdzie wymiana baterii w urządzeniu byłaby trudna, niepraktyczne czy niemożliwa.
Opracowana przez nas technologia mikrozasilania może znaleźć miejsce w wielu różnych zastosowaniach, od technologii kosmicznych, poprzez bezpieczeństwo po medycynę, mówi profesor Tom Scott. Uczony przypomniał, że prace nad nowatorskim rozwiązaniem trwały przez pięć lat.
Diamentowa bateria generuje dostarcza energię przechwytując elektrony pochodzące z rozpadu radioaktywnego węgla-14. Jako że czas półrozpadu C-14 wynosi 5730 lat, urządzenie takie może działać bardzo długo.
Diamentowe baterie to bezpieczny i zrównoważony sposób na długotrwałe dostarczanie mocy rzędu mikrowatów. To nowa technologia, która pozwala na zamknięcie w sztucznych diamentach niewielkich ilości węgla-14, mówi Sarah Clark, dyrektor wydziału Cyklu Paliwowego Trytu w UKAEA.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Koty to jedne z najpopularniejszych zwierząt domowych, towarzyszą ludziom od tysięcy lat, wydawałoby się więc, że powinniśmy wiedzieć o nich wszystko. Jednak dopiero teraz naukowcy dowiedzieli się, jak koty... mruczą. Dotychczas sposób wydawania tego dźwięku stanowił zagadkę, gdyż zwierzęta o krótkich strunach głosowych rzadko wydają niskie dźwięki. Tymczasem u kotów niskie mruczenie (w zakresie 20-30 Hz) jest czymś powszechnym. Okazało się, że posiadają one w krtani inne struktury, umożliwiające mruczenie.
Rodzaj dźwięku, do wydawania którego zdolne jest zwierzę, zwykle zależy od rozmiarów strun głosowych. Zwykle im większe zwierzę, tym dłuższe struny głosowe, a co za tym idzie – możliwość wydawania niższych dźwięków. Kot domowy należy do niewielkich zwierząt, ma więc krótkie struny głosowe. Za ich pomocą wydaje wysokie dźwięki, miauczenie czy skrzeczenie. Jednak potrafi też nisko mruczeć.
Obowiązująca obecnie hipoteza – zwana hipotezą AMC – mówiła, że zdolność kotów do mruczenia jest całkowicie uzależniona od „aktywnego kurczenia mięśni”. Christian T. Herbst z Uniwersytetu Wiedeńskiego i jego koledzy z Austrii, Szwajcarii i Czech postanowili przetestować tę hipotezę. Przeprowadzili więc sekcję tchawic ośmiu kotów domowych, które zostały uśpione z powodu różnych chorób. Odkryli, że z tchawicy można uzyskać niski dźwięk, gdy przechodzi przez nią powietrze, zatem skurcze mięśni nie są tutaj potrzebne. Naukowcy zauważyli, że powstanie niskich dźwięków (25-30 Hz) jest możliwe dzięki obecności tkanki łącznej w kocich strunach głosowych. Tkanka ta była znana już wcześniej, ale dotychczas nikt nie łączył jej z mruczeniem. Herbst nie wyklucza jednak, że skurcze mięśni są potrzebne do wzmocnienia pomruku.
Teraz, skoro już dowiedzieliśmy się, jak koty mruczą, do rozwiązania zostaje zagadka, po co to robią.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.