Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Wysokie poziomy hormonu sytości cholecystokininy (CCK) wydają się obniżać prawdopodobieństwo rozwoju choroby Alzheimera.

Zespół z Uniwersytetu Stanowego Iowy analizował dane zgromadzone w ramach Alzheimer's Disease Neuroimaging Initiative (ADNI). Amerykanie przyglądali się poziomom CCK u 287 osób.

CCK występuje zarówno w jelicie cienkim, jak i w mózgu. W tym pierwszym odpowiada za wchłanianie tłuszczów i białek. W tym drugim jest zlokalizowane w hipokampie, który pełni funkcję centrum pamięciowego.

Okazało się, że u ludzi z wyższym poziomem CCK ryzyko wystąpienia łagodnych zaburzeń poznawczych (ang. mild cognitive impairment, MCI), które mogą się w przyszłości przekształcać w chorobę Alzheimera, jest niższe aż o 65%.

Odkrycie pozwoli rzuć więcej światła na to, jak hormony sytości w krwi i mózgu wpływają na funkcje mózgu - podkreśla prof. Auriel Willette.

Jak wyjaśnia Alexandra Plagman, skupiono się właśnie na CCK, bo podczas tworzenia śladów pamięciowych ulega ona silnej ekspresji. Naukowcy chcieli więc sprawdzić, czy istnieje związek między stężeniem CCK, pamięcią (czy szerzej, funkcjonowaniem poznawczym) oraz objętością substancji szarej w hipokampie i w innych ważnych rejonach mózgu.

Oprócz tego autorzy artykułu z Neurobiology of Aging przyglądali się poziomowi biomarkerów biologicznych choroby Alzheimera w płynie mózgowo-rdzeniowym, m.in. Aβ1-42 i białka P-tau.

Akademicy zauważyli, że wyższe poziomy CCK wiązały się z niższym prawdopodobieństwem MCI czy choroby Alzheimera, lepszymi wynikami globalnymi i w podskali pamięciowej, a także z większą objętością istoty szarej w tylnym zakręcie obręczy, zakręcie przyhipokampowym i przyśrodkowej korze przedczołowej.

Wyższy poziom CCK wiązał się z wyższym stężeniem całkowitego tau i p-tau181, ale nie Aβ1-42. Poziom CCK może więc odzwierciedlać ochronę kompensacyjną przed patologicznymi zmianami, zwłaszcza że całkowite tau zmniejsza wpływ CCK na pamięć o niemal połowę (w miarę wzrostu całkowitego tau wyższe stężenia cholecystokininy nie chronią już tak dobrze przed pogorszeniem funkcji pamięciowych).

Amerykanie mają nadzieję, że ich badania zachęcą innych do przyglądania się odżywczemu aspektowi diety, a nie tylko jej kaloryczności.

Przyglądając się aspektowi odżywczemu, jesteśmy w stanie powiedzieć, czy dana dieta może zapobiegać chorobie Alzheimera albo jej postępom - mówi Plagman.

Regulacja tego, kiedy i jak dużo jemy, może mieć pewien związek z tym, jak dobra jest nasza pamięć - dodaje Willette.


« powrót do artykułu

Share this post


Link to post
Share on other sites
3 godziny temu, KopalniaWiedzy.pl napisał:

Przyglądając się aspektowi odżywczemu, jesteśmy w stanie powiedzieć, czy dana dieta może zapobiegać chorobie Alzheimera albo jej postępom - mówi Plagman.

No i nie powiedział jaka dieta zwiększa CCK we krwi :angry:.  (odp.:bogatotłuszczowa)

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Sydney wykazali, że trening siłowy (podnoszenie ciężarów) może w dłuższej perspektywie czasowej spowolnić, a nawet zahamować degenerację obszarów mózgu podatnych na chorobę Alzheimera (ChA).
      Australijczycy zademonstrowali, że sześć miesięcy treningu siłowego może pomóc w ochronie obszarów mózgu podatnych na ChA nawet przez kolejny rok.
      Akademicy przeprowadzili testy z udziałem 100 starszych osób zagrożonych chorobą Alzheimera ze względu na łagodne zaburzenia poznawcze (ang. mild cognitive impairment, MCI).
      MCI charakteryzuje pogorszenie funkcji poznawczych, przeważnie pamięci; nie ma ono jednak takiego nasilenia, jak w otępieniu. Choć pacjenci z MCI donoszą o pogorszeniu pamięci i/lub innych funkcji poznawczych, nadal funkcjonują samodzielnie. Wiele badań pokazało, że u osób z łagodnymi zaburzeniami poznawczymi występuje podwyższone ryzyko wystąpienia otępienia.
      Ochotników wylosowano do grup z komputerowym treningiem mózgu, treningiem siłowym, a także z połączonym treningiem komputerowym i siłowym (utworzono też grupę kontrolną). Treningi trwały pół roku, później przez 12 miesięcy seniorzy mieli zachowywać się w typowy dla siebie sposób.
      Jak wyjaśnia prof. Michael Valenzuela, badani ćwiczyli przez 6 miesięcy pod nadzorem trenera, przeważnie dwa razy w tygodniu po 45 min (wykonywali m.in. ćwiczenia z hantlami). Później odczekiwaliśmy 12 miesięcy [...].
      Trening siłowy prowadził do ogólnej poprawy osiągów poznawczych, poprawy powiązanej z ochroną przed degeneracją (atrofią) pewnych specyficznych subregionów hipokampa; chodzi o podkładkę, zakręt zębaty i pole CA1.
      Subregiony hipokampa, na które wpływał trening siłowy, są szczególnie podatne na ChA. Autorzy publikacji z pisma Neuroimage: Clinical zauważyli, że w warunkach kontrolnych, gdzie nie wykonywano ćwiczeń siłowych, subregiony hipokampa skurczyły się w ciągu 18 miesięcy o 3-4%, zaś u osób trenujących siłowo spadki objętości wynosiły tylko 1-2%, a w niektórych regionach nie było ich w ogóle.
      Nasze badanie pokazuje, że trening siłowy może chronić pewne subregiony hipokampa przed degeneracją (skurczeniem) nawet przez 12 miesięcy od zakończenia programu - podkreśla dr Kathryn Broadhouse.
      Naukowcy wyjaśniają, że w ciągu 18 miesięcy ochotnicy 3-krotnie przechodzili badanie rezonansem magnetycznym. Podział hipokampa na segmenty jest trudny, ponieważ granice między strukturami są czasem niejasne i nawet anatomowie debatują, gdzie wyznaczyć linię. Z tego powodu zdecydowaliśmy się ograniczyć nasze analizy do subregionów, w przypadku których dane są spójne - opowiada Broadhouse.
      To pierwsza sytuacja, kiedy jakaś interwencja, medyczna czy związana z trybem życia, była w stanie spowolnić, a nawet zatrzymać na tak długi czas degenerację w rejonach mózgu szczególnie podatnych na ChA. Zważywszy, że wiązało się to również z ochroną przed pogorszeniem funkcji poznawczych, wniosek wydaje się oczywisty: trening oporowy powinien się stać częścią strategii obniżania ryzyka demencji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania na myszach, których wyniki ukazały się właśnie w piśmie JNeurosci, wskazują, że dieta suplementowana ciałami ketonowymi (ich estrami) może ochronić neurony przed śmiercią w przebiegu choroby Alzheimera (ChA).
      Na wczesnych etapach ChA mózg staje się nadmiernie pobudzony, być może przez utratę hamujących GABA-ergicznych neuronów wstawkowych (interneuronów). Ponieważ interneurony potrzebują więcej energii w porównaniu do innych neuronów, wydają się bardziej podatne na obumieranie podczas ekspozycji na beta-amyloid (wcześniej wykazano, że beta-amyloid uszkadza mitochondria, czyli centra energetyczne komórki, oddziałując na sirtuinę 3, SIRT3).
      Zespół dr Aiwu Cheng z amerykańskiego Narodowego Instytutu Starzenia genetycznie obniżył poziom SIRT3 w mysim modelu alzheimera. Zaobserwowano, że gryzonie z niskim poziomem sirtuiny 3 cechował o wiele wyższy wskaźnik śmiertelności (zarówno samce, jak i samice umierały przedwcześnie przed 5. miesiącem życia) oraz nasilone obumieranie interneuronów. Zwierzęta te miały też gwałtowne drgawki; porównań dokonywano do standardowego mysiego modelu ChA oraz do myszy z grupy kontrolnej.
      Co istotne, okazało się, że podawanie suplementowanej karmy sprawiało, że gryzonie z obniżonym poziomem SIRT3 miały mniej drgawek i rzadziej umierały. Dieta ta zwiększała także poziom sirtuiny 3.
      Jak tłumaczą akademicy, zastosowana dieta zwiększała ekspresję SIRT3, zapobiegała zgonom związanym z drgawkami oraz degeneracji neuronów GABA-ergicznych. To potwierdza, że nasilona utrata neuronów GABA-ergicznych oraz nadmierna pobudliwość sieci neuronalnych u myszy z tej grupy jest wywołana spadkiem poziomu sirtuiny 3, a zjawiska te można zniwelować, zwiększając ekspresję SIRT3.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choroba Alzheimera i towarzyszący jej rozpad osobowości przerażają wielu, a dostępne leki, delikatnie mówiąc, nie grzeszą skutecznością. Dzięki pracy zespołu dr. Piotra Pięty z IChF PAN mogą powstać nowe, efektywniejsze farmaceutyki. Naukowcy pokazali, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu wpływa na sposób ich oddziaływania z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Kolejnym krokiem ma być testowanie w tym modelu potencjalnych leków.
      Naukowcy są m.in. po to, żeby wyjaśniać, jak funkcjonuje świat. Ich badania często wydają się abstrakcyjne, ale jak się okazuje mogą całkiem realnie pomóc wielu z nas. Tak jest z pracą zespołu dr. Piotra Pięty z IChF PAN. Wykazał on, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu – substancji uznawanej za "winowajcę" w chorobie Alzheimera – wpływa na sposób oddziaływania tych cząstek z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby.
      Naukowcy z IChF pracują na syntetycznych, modelowych błonach komórkowych, zbudowanych najprościej jak można sobie wyobrazić, ale jednocześnie podobnych do tych, jakie można znaleźć w ludzkim mózgu. Błony te składają się tylko z mieszaniny fosfolipidów (bez receptorów i innych białek błonowych) i dzięki temu umożliwiają badaczom skupienie się wyłącznie na tym, jak rozmaite cząsteczki wpływają na barierę zapewniającą trwałość komórek. Chcieliśmy się dowiedzieć, co cząsteczki beta-amyloidu tak naprawdę robią z tymi błonami, wyjaśnia dr Pięta, czy one się osadzają na ich powierzchni, czy je niszczą, czy rozpuszczają, a jeśli rozpuszczają, to dlaczego […].
      Pytań jest wiele, odpowiedzi dopiero się pojawiają. Nam w naszych badaniach udało się kontrolować wielkość oligomerów, czyli niedużych cząsteczek złożonych z kilku amyloidów, i dzięki temu mogliśmy sprawdzić, w jaki sposób ta wielkość wpływa na mechanizm ich oddziaływania z modelową błoną - mówi dr Pięta. W początkowych badaniach nad alzheimerem badano mózgi osób chorych, a w zasadzie już zmarłych na tę chorobę. W mózgach znajdowano złogi zbudowane z długich nici – fibryli - i przez wiele, wiele lat uważano, że to te fibryle są głównym czynnikiem patogennym.
      Ostatnie badania, w tym te prowadzone przez dr. Piętę, pokazują jednak coś innego. To nie długie fibryle są winowajcą, lecz raczej ich prekursory, oligomery beta-amyloidu. Amyloidy są produkowane w sposób ciągły u każdego z nas z białek błonowych; są odcinane enzymatycznie. Problem się pojawia, gdy przestają działać mechanizmy regulujące ich ilość i "wygląd". Nietoksyczne amyloidy zawierają 39-43 aminokwasy, a ich drugorzędowa struktura to alfa-helisa (kształt nieco przypominający łańcuch DNA). Te "niedobre", zmienione, przypominają raczej harmonijki. Najgorsze są takie, które mają 42 aminokwasy. Za pomocą mikroskopii sił atomowych przeprowadziliśmy dwa typy pomiarów, jeden dla cząsteczek małych, o średnicy ok. 2 nm, a drugi dla nieco większych – o średnicy ok. 5 nm - wyjaśnia naukowiec. Okazało się, że małe oligomery działają zupełnie inaczej niż duże. Duże po osadzeniu na błonie agregują, tworząc długie fibryle. Wszystkie zjawiska, które przebiegają z ich udziałem, zachodzą na powierzchni modelowej błony komórkowej i nie prowadzą do jej zniszczenia. Małe oligomery to zupełnie inna historia. One błonę niszczą. Na początku tworzą w niej różnych rozmiarów i kształtów dziury - wyjaśnia dr Pięta. Po utworzeniu dziury małe oligomery wnikają do wnętrza błony i wraz z cząsteczkami fosfolipidów błonowych tworzą globularne micele. Te micelarne kompleksy dyfundują na zewnątrz i w ten sposób usuwają fosfolipidy z błony, prowadząc do jej rozpuszczania. Mechanizm oddziaływania z błoną zmienia się wraz ze zmianą wielkości oligomeru, lecz w przypadku obu badanych przez nas amyloidów wywołuje spadek trwałości mechanicznej błony o ⁓50%. Innymi słowy, zarówno małe, jak i duże oligomery są toksyczne, choć mechanizm ich działania jest inny. Nasze badania wyjaśniają te mechanizmy i godzą sprzeczne raporty publikowane w literaturze - precyzuje badacz.
      Na razie wyjaśniamy tylko podstawowe mechanizmy - mówi dr Pięta, ale w kolejnym etapie naszych badań dołożymy do tego układu cząsteczki leków i sprawdzimy, które z nich potrafią modyfikować oddziaływanie amyloidu z błoną, a zatem, być może, i przebieg choroby. Podejmiemy badania cząsteczek, które np. mogłyby zdezaktywować beta-amyloid, przyczepiając się do niego, zanim zniszczy błonę. Rozpoczęliśmy współpracę z farmaceutami i biochemikami. Możemy im zasugerować, czy ich leki oddziałują z amyloidami, a jeżeli tak, to na jakim poziomie i jak powinny się zachowywać, żeby np. podwyższać trwałość błony komórkowej - podsumowuje naukowiec.
      Badania prowadzone w IChF PAN z pewnością przyczyniają się do lepszego zrozumienia mechanizmów prowadzących do choroby Alzheimera, a tym samym mają szansę zrewolucjonizować sposób jej leczenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu.
      U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty.
      Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu.
      Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób.
      Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu.
      Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Strach, który wywołują drapieżniki, może pozostawiać trwałe zmiany w obwodach neuronalnych dzikich zwierząt i wywoływać w ten sposób utrzymujące się bojaźliwe zachowania. Przypomina to zjawiska obserwowane w przebiegu zespołu stresu pourazowego (PTSD).
      Zespół Liany Zanette z Uniwersytetu Zachodniego Ontario wykazał, że wpływ kontaktu z drapieżnikami na mózgowe obwody strachu utrzymuje się poza okres występowania natychmiastowej reakcji "walcz lub uciekaj" i jest mierzalny nawet po ponad tygodniu. Dzieje się tak, mimo że w międzyczasie zwierzęta przebywają w naturalnych warunkach środowiskowych i społecznych.
      Uzyskane przez nas wyniki mają ogromne znaczenie dla naukowców zajmujących się badaniami biomedycznymi, zdrowiem psychicznym i ekologów. Stanowią bowiem poparcie dla stwierdzenia, że PTSD nie jest czymś nienaturalnym i pokazują, że trwałe skutki strachu wywołanego przez drapieżniki, które zapewne wpływają na rozrodczość i przeżywalność, to coś normalnego w świecie zwierząt.
      Zachowanie wspomnień zagrażających życiu spotkań z drapieżnikami jest korzystne ewolucyjnie, jeśli pomaga jednostce unikać w przyszłości takich zdarzeń. Autorzy coraz większej liczby badań biomedycznych przekonują, że w takim świetle PTSD stanowi koszt dziedziczenia prymitywnego ewolucyjnie mechanizmu, który przedkłada przeżycie nad jakość życia.
      Ekolodzy zauważają z kolei, że drapieżniki mogą wpływać na liczebność ofiar, nie tylko je zabijając, ale i strasząc. W ramach wcześniejszych badań ekipa Zanette wykazała, na przykład, że przestraszeni rodzice słabiej radzą sobie z opieką nad młodymi.
      W najnowszym studium wzięły udział schwytane sikory jasnoskrzydłe (Poecile atricapillus). Przez 2 dni pojedynczym osobnikom (15 samcom i 12 samicom) odtwarzano wokalizacje drapieżników albo niedrapieżników. Później ptaki trafiały do stada, które przez tydzień przebywało na zewnątrz i nie było wystawiane na żadne wskazówki eksperymentalne. Utrzymujące się bojaźliwe zachowania badano, mierząc u wylosowanych 15 ptaków reakcje na zawołania alarmowe P. atricapillus. Wpływ na mózgowe obwodu strachu określano zaś, mierząc poziom pewnego czynnika transkrypcyjnego w ciele migdałowatym i hipokampie (chodziło o białko ΔFosB, czyli czynnik transkrypcyjny należący do rodziny Fos).
      Wykorzystane ścieżki dźwiękowe składały się z dźwięków wydawanych albo przez 6 gatunków polujących na sikory białoskrzydłe (krogulca czarnołbistego, krogulca zmiennego, włochatkę małą, myszłowa rdzawosternego, drzemlika i puszczyka kreskowanego), albo przez 6 niezagrażających sikorom gatunków (krzyżówkę, żabę leśną, szarobrewkę śpiewną, dzięcioła kosmatego, dzięcioła włochatego i kowalika czarnogłowego). W głównym eksperymencie wokalizacje odtwarzano za dnia, łącznie przez 5 min w ciągu godziny. Dźwięki pojawiały się w losowych interwałach, przy czym odgłosy każdego z gatunków "nadawano" 1-4-krotnie co 2 godziny.

      « powrót do artykułu
×
×
  • Create New...