Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Podczas snu hipokamp uczy korę nową, czego dowiedział się za dnia

Recommended Posts

Neurolog Anna Schapiro z University of Pennsylvania i jej zespół, wykorzystując model sieci neuronowej, odkryli, że gdy w czasie snu nasz mózg wchodzi i wychodzi z fazy REM, hipokamp uczy korę nową tego, czego dowiedział się za dnia. Od dawna wiadomo, że w czasie snu zachodzą procesy uczenia się i zapamiętywania. W ciągu dnia kodujemy nowe informacje i doświadczenia, idziemy spać, a gdy się budzimy, nasza pamięć jest już w jakiś sposób zmieniona, mówi Schapiro.

Schapiro, doktorant Dhairyya Singh oraz Kenneth Norman z Princeton University stworzyli model obliczeniowy oparty na sieci neuronowej, który dał im wgląd w proces uczenia się w czasie snu.

Z artykułu opublikowanego na łamach PNAS dowiadujemy się, że w czasie gdy mózg przechodzi z fazy NREM do REM, co ma miejsce około 5 razy w ciągu nocy, hipokamp przekazuje do kory nowej informacje zdobyte za dnia.

To nie jest tylko model uczenia się lokalnych struktur mózgu. To model pokazujący, jak jeden obszar mózgu uczy drugi obszar mózgu w czasie snu, gdy nie ma wskazówek ze świata zewnętrznego. To również pokazuje, jak zapamiętujemy informacje o zmieniającym się otoczeniu, mówi Schapiro.

Naukowcy zbudowali model złożony z hipokampu – obszaru mózgu odpowiedzialnego za zdobywanie nowych informacji – i kory nowej, w której m.in. odbywają się procesy związane z językiem, świadomością wyższego rzędu i pamięcią długotrwałą. Model pokazał, że podczas fazy NREM mózg – pod kierunkiem hipokampu – głównie „przegląda” najnowsze wydarzenia i dane, a w czasie fazy REM uruchamiane są dawniejsze wspomnienia, przechowywane w korze nowej. Oba te obszary mózgu komunikują się między sobą w fazie NREM. To wtedy hipokamp przekazuje do kory nowej to, czego się niedawno nauczył. Natomiast w fazie REM aktywuje się kora nowa, które odtwarza to, co już wie, dzięki czemu tworzone jest pamięć długotrwała, wyjaśnia Singh.

Dodaje, że bardzo ważne jest przełączanie pomiędzy obiema fazami. Gdy kora nowa nie ma szans na odtworzenie sobie informacji, które przechowuje, zostają one nadpisane. Uważamy, że do powstania długotrwałych wspomnień konieczne jest przełączanie się pomiędzy fazami REM i NREM, stwierdza Singh.

Naukowcy zastrzegają, że wciąż muszą potwierdzić eksperymentalnie swoje spostrzeżenia. Zauważają też, że ich symulacje dotyczyły dorosłej osoby, która dobrze przespała całą noc. Zatem nie muszą być prawdziwe w odniesieniu do innych sytuacji, jak np. do dzieci czy dorosłych, którzy dobrze nie spali. Tego typu model, który można dostosowywać do różnych sytuacji i osób, może być niezwykle przydatny w badaniach nad problemem snu. W dłuższej perspektywie posłuży on do badań nad zaburzeniami psychicznymi i neurologicznymi, w których zaburzenia snu są jednym z objawów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Czy coś może łączyć zdrowe noworodki z osobami cierpiącymi na chorobę Alzhemera? Okazuje się, że tak. Jak donosi międzynarodowy zespół naukowy, u jednych i drugich występuje podniesiony poziom biomarkerów odpowiedzialnych za alzheimera. Mowa tutaj o fosforylowanym białku tau, a konkretnie o jego odmianie p-tau217. Jest ono od dawna wykorzystywane w testach diagnostycznych choroby Alzheimera. A noworodki mają go więcej niż cierpiący na alzheimera.
      Zwiększenie poziomu p-tau217 we krwi ma być oznaką odkładania się w mózgu białka β-amyloidowego w postaci blaszek amyloidowych. Oczywistym jest, że u noworodków takie patologiczne zmiany nie występują, zatem u nich zwiększenie p-tau217 musi być odzwierciedleniem innego, całkowicie zdrowego, procesu.
      Badacze ze Szwecji, Australii, Norwegii i Hiszpanii przeanalizowali próbki krwi ponad 400 osób. Były wśrod nich noworodki, wcześniaki, młodzi dorośli, starsi dorośli oraz osoby ze zdiagnozowaną chorobą Alzheimera. Okazało się, że najwyższy poziom p-tau217 występował u noworodków, a szczególnie u wcześniaków. W ciągu pierwszych miesięcy życia poziom ten spadał, aż w końcu stabilizował się na poziomie osób dorosłych.
      Wydaje się, że o ile u osób z chorobą Alzheimera zwiększony poziom p-tau217 powiązany jest z tworzeniem się splątków tau, które uszkadzają mózg, to wydaje się, że u noworodków wspomaga on zdrowy rozwój mózgu, wzrost neuronów i ich łączenie się z innymi neuronami. Badacze zauważyli też związek z terminem porodu, a poziomem p-tau217. Im wcześniej się dziecko urodziło, tym wyższy miało poziom tego biomarkera, co może sugerować, że wspomaga on gwałtowny rozwój mózgu w trudnych warunkach wcześniactwa.
      Najbardziej interesującym aspektem odkrycia jest przypuszczenie, że być może na początkowych etapach życia nasze mózgi mogą posiadać mechanizm chroniący przed szkodliwym wpływem białek tau. Jeśli zrozumiemy, jak ten mechanizm działa i dlaczego tracimy go z wiekiem, może uda się opracować nowe metody leczenia. Jeśli nauczymy się, w jaki sposób mózgi noworodków utrzymują tau w ryzach, być może będziemy w stanie naśladować ten proces, by spowolnić lub zatrzymać postępy choroby Alzheimera, mówi główny autor badań, Fernando Gonzalez-Ortiz.
      Źródło: The potential dual role of tau phosphorylation: plasma phosphorylated-tau217 in newborns and Alzheimer’s disease, https://academic.oup.com/braincomms/article/7/3/fcaf221/8158110

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Koreańscy uczeni poinformowali na łamach Occupational & Environmental Medicine, że długie godziny pracy – zdefiniowane tutaj jako praca przez co najmniej 52 godziny w tygodniu – mogą zmieniać strukturę mózgu. Zmiany dotyczą przede wszystkim obszarów powiązanych z regulacją emocji i funkcjami wykonawczymi, jak pamięć robocza i rozwiązywanie problemów. Nadmierna praca powoduje zmiany adaptacyjne w mózgu, które mogą negatywnie wpływać na nasze zdrowie.
      Dostarczamy nowych neurobiologicznych dowodów łączących wydłużony czas pracy ze zmianami strukturalnymi mózgu, podkreślając potrzebę dalszych badań, by zrozumieć długoterminowe skutki poznawcze i emocjonalne przepracowania, czytamy w opublikowanym artykule.
      Nauka zna psychologiczne skutki przepracowania, jednak niewiele wiadomo, w jaki sposób wpływa ono na strukturę mózgu. Już wcześniej pojawiały się sugestie mówiące, że związane z nadmierną pracą chroniczny stres i brak odpoczynku mogą zmieniać budowę mózgu, jednak były one poparte niewielką liczbą dowodów.
      Autorzy najnowszych badań przyjrzeli się 110 ochotnikom. Grupa składała się z lekarzy, pielęgniarek oraz innych pracowników służby zdrowia. Wśród nich były 32 osoby (28%), które pracowały co najmniej 52 godziny w tygodniu.
      Osoby, które spędzały więcej czasu w pracy to zwykle osoby młodsze (przeważnie poniżej 45. roku życie) i lepiej wykształcone, niż osoby pracujące mniej. Różnice w objętości poszczególnych obszarów mózgu oceniano za pomocą badań morfometrycznych opartych o pomiar voksela (VBM). Analizy wykazały istnienie znaczących zmian u osób, które pracowały powyżej 52 godzin tygodniowo. Miały one średnio o 19-procent większą objętość zakrętu czołowego środkowego, który jest zaangażowany w skupienie uwagi, pamięć roboczą i przetwarzanie języka. Powiększonych było też 16 innych regionów, w tym zakręt czołowy górny, odpowiedzialny m.in. za funkcje wykonawcze (podejmowanie decyzji, myślenie abstrakcyjne, planowanie).
      Autorzy badań podkreślają, że badania przeprowadzili na niewielkiej grupie osób i uchwyciły one tylko różnie istniejące w konkretnym momencie. Nie można zatem na ich podstawie wyciągać jednoznacznych wniosków co do skutków i przyczyn. Nie wiadomo, czy zmiany te są skutkiem czy przyczyną przepracowywania się.
      Mimo to badania wskazują na istnienie potencjalnego związku pomiędzy zmianami objętości mózgu a długimi godzinami pracy. Zmiany zaobserwowane u osób przepracowujących się mogą być adaptacją do chronicznego stresu, stwierdzili naukowcy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słuchając ulubionej muzyki odczuwamy przyjemność, niejednokrotnie wiąże się to z przeżywaniem różnych emocji. Teraz, dzięki pracy naukowców z fińskiego Uniwersytetu w Turku dowiadujemy się, w jaki sposób muzyka na nas działa. Uczeni puszczali ochotnikom ich ulubioną muzykę, badając jednocześnie ich mózgi za pomocą pozytonowej tomografii emisyjnej (PET). Okazało się, że ulubione dźwięki aktywują układ opioidowy mózgu.
      Badania PET wykazały, że w czasie gdy badani słuchali ulubionej muzyki, w licznych częściach mózgu, związanych z odczuwaniem przyjemności, doszło do uwolnienia opioidów. Wzorzec tego uwolnienia powiązano ze zgłaszanym przez uczestników odczuwaniem przyjemności. Dodatkowo za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) skorelowano indywidualną dla każdego z badanych liczbę receptorów opioidowych z aktywacją mózgu. Im więcej receptorów miał mózg danej osoby, tym silniejsze pobudzenie widać było na fMRI.
      Po raz pierwszy bezpośrednio obserwujemy, że słuchanie muzyki uruchamia układ opioidowy mózgu. Uwalnianie opioidów wyjaśnia, dlaczego muzyka powoduje u nas tak silne uczucie przyjemności, mimo że nie jest ona powiązana z zachowaniami niezbędnymi do przetrwania, takimi jak pożywianie się czy uprawianie seksu, mówi Vesa Putkinen. Profesor Luri Nummenmaa dodaje, że układ opioidowy powiązany jest też ze znoszeniem bólu, zatem jego pobudzenie przez muzykę może wyjaśniać, dlaczego słuchanie muzyki może działać przeciwbólowo.
      Receptorem, który zapewnia nam przyjemność ze słuchania muzyki jest μ (MOR). Jego aktywacja powoduje działanie przeciwbólowe – to na niego działają opioidy stosowane w leczeniu bólu, euforię (przez co przyczynia się do uzależnień) czy uspokojenie oraz senność.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania przeprowadzone na gryzoniach w średnim wieku wskazują, że brak witaminy K może zwiększać stan zapalny i zakłócać proliferację komórek w hipokampie, części mózgu odpowiedzialnej za pamięć i uczenie się. Wyniki pokazują zatem, w jaki sposób niedobór witaminy K może wpływać na nasze zdolności poznawcze w miarę, jak przybywa nam lat.
      Witamina K obecna jest w zielonych warzywach liściastych, jak brukselka, szpinak, brokuły czy jarmuż. Wiadomo, że odkrywa ważną rolę w krzepnięciu krwi, prawdopodobnie ma też pozytywny wpływ na zdrowie układu krwionośnego i stawy. Teraz dowiadujemy się, że może mieć też wpływ na ludzki mózg.
      Istnieją badania sugerujące, że witamina K chroni mózg przed spadkiem zdolności poznawczych w miarę, jak przybywa nam lat. Nasze prace mają na celu zrozumienie tego mechanizmu, mówi główny autor badań Tong Zheng z Tufts University.
      Naukowcy przez pół roku karmili jedną grupę myszy standardową dietą, a druga grupa otrzymywała dietę ubogą w witaminę K. Naukowcy skupili się na metachinonie-4 (witamina K2 MK-4), związku z grupy witamin K, który występuje w tkance mózgowej. Odkryli, że u myszy karmionych dietą ubogą w witaminę K poziom tego związku był znacząco niższy. A jego niedobór wiązał się z zauważalnym spadkiem zdolności poznawczych zwierząt. Podczas testów takie myszy miały na przykład problem w odróżnieniu nowych obiektów do już znanych, co jest jasną wskazówką problemów z pamięcią. Podczas innego z badań – mających sprawdzić orientację w przestrzeni – myszy miały nauczyć się, gdzie znajduje się ukryta platforma z wodą. Te z niedoborem witaminy K uczyły się znacznie dłużej.
      Badania tkanki mózgowej myszy wykazały istnienie znaczących zmian w hipokampie. U tych, które spożywały zbyt mało witaminy K doszło do zmniejszenia liczby komórek ulegających proliferacji w zakręcie zębatym, co przekładało się na mniej intensywną neurogenezę. Neurogeneza odgrywa kluczową rolę w procesach uczenia się i zapamiętywania, a jej zaburzenie może bezpośrednio wpływać na zaobserwowany spadek zdolności poznawczych, wyjaśnia Zheng. Jakby jeszcze tego było mało, naukowcy znaleźli dowody na zwiększenie się stanu zapalnego w mózgach myszy z niedoborem witaminy K. Odkryliśmy w nich większą liczbę nadaktywnych komórek mikrogleju, dodaje uczony.
      Autorzy badań podkreślają, że ich wyniki nie oznaczają, iż ludzie powinni przyjmować suplementy witaminy K. Ludzie powinni stosować zdrową dietę i jeść warzywa, mówi profesor Sarah Booth. Uczeni z Tufts University współpracują z Rush University Medical Center w Chicago, gdzie zespół Booth prowadzi badania obserwacyjne dotyczące ludzkiego mózgu i zdolności poznawczych. Wiemy z nich, że zdrowa dieta działa, że ludzie, który nie odżywiają się zdrowo, nie żyją tak długo, a ich zdolności poznawcze nie dorównują ludziom ze zdrową dietą. Łącząc badania na ludziach i zwierzętach możemy lepiej poznać mechanimy różnych zjawisk i dowiedzieć się, w jaki sposób długoterminowo poprawić zdrowie mózgu, dodaje uczona.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...