Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Saturn szybko niszczy swoje pierścienie

Rekomendowane odpowiedzi

Przeprowadzone przez NASA badania potwierdziły, że Saturn niszczy swoje pierścienie w maksymalnym tempie oszacowanym przez misje Voyager 1 i 2. Pierścienie są ściągane na powierzchnię planety, na którą spada tworzący je lód i pył.

Szacujemy, że z pierścieni opada na Saturna tyle wody, że w ciągu pół godziny wypełniłaby ona basen olimpijski. W tym tempie pierścienie Satruna znikną w ciągu 300 milionów lat, jeśli jednak weźmiamy pod uwagę nie tylko dane z Voyagerów, ale też to, co przekazała sonda Cassini na temat materiału opadającego na równik Saturna, to możemy stwierdzić, że pierścienie znikną w czasie krótszym niż 100 milionów lat. To bardzo szybko, biorąc pod uwagę fakt, że Saturn liczy sobie ponad 4 miliardy lat, mówi James O'Donoghue z Goddard Space Flight Center, główny autor badań dotyczących pierścieni Saturna.

Naukowcy od dawna zastanawiali się, że Saturn narodził się z pierścieniami, czy też nabył je później. Najnowsze badania sugerują, że prawdziwy jest drugi z tych scenariuszy. Uczeni sądzą, że pierścienie liczą sobie nie więcej niż 100 milionów lat. Tyle bowiem czasu musiało zająć pierścieniowi C dojście do obecnego stanu, zakładając, że pierwotnie był on równie gęsty co pierścień B.

Zdaniem O'Donoghue pierścienie Saturna znajdują się obecnie w połowie swojego życia. Niewykluczone też, że w przeszłości równie gęste pierścienie miały Jowisz, Uran i Neptun. Obecnie pozostały im jednie ich resztki.

Nie wiadomo, skąd się wzięły pierścienie wokół planety. Jedna z teorii mówi, że mogą być one pozostałościami po księżycach, które zaczęły się zderzać, gdy ich orbity zakłóciła przelatująca obok kometa lub asteroida.

Pierwsze sygnały o zanikających pierścieniach Saturna przesłały nam Voyagery. Na zgromadzonych przez nie danych widoczne były zarówno dziwne zmiany w naładowaniu jonosfery Saturna, różnice w gęstości pierścieni jak i wąskie ciemne pasy wokół planety. Kilka lat później Jack Connerney z NASA opublikował pracę, w której wysunął teorię, że wszystkie te zjawiska są połączone i mają związek z opadaniem materiału z pierścieni na planetę.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale „zanikają” tylko te bliższe pierścienie, C i D, czy całość opada?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mnie też to martwi, że niedługo znikną. Może by jakiś crowdfunding zorganizować albo od razu fundację pod hasłem "Ratujmy pierścienie Saturna"? Wchodzi ktoś?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Atlantycka Niña to chłodna faza naturalnego wzorca klimatycznego. Podobnie jak znacznie bardziej znany wzorzec zachodzącej na Pacyfiku oscylacji południowej (ENSO), na którą składają się fazy El Niño, La Niña i faza neutralna, także na Atlantyku co kilka lat mamy fazę zimną i gorącą. Temperatura powierzchni oceanu we wschodniej części równikowego Oceanu Atlantyckiego wykazuje zaskakujący, nieintuicyjny cykl. Wody w tamtym regionie najcieplejsze są wiosną, a najzimniejsze w lipcu i sierpniu.
      Do tego ochłodzenia w lecie dochodzi w wyniku działalności wiatru. Gdy na półkuli północnej jest lato, równikowy pas opadów, pod wpływem silniejszego nagrzewania przez słońce, przemieszcza się na północ, co powoduje wciąganie nad równikowy Atlantyk powietrza z południowego-wschodu. Wiejące wówczas pasaty są tak silne, że przemieszczają gorące wody powierzchniowe z równika i pojawia się zjawisko upwellingu, podnoszenia się chłodnych wód głębinowych.
      Dlatego w miesiącach letnich na równikowych obszarach Atlantyku może pojawiać się zimna woda. Co kilka lat – w wyniku naturalnej zmienności – ten chłodny obszar jest albo cieplejszy, albo chłodniejszy od własnej średniej średniej. Specjaliści mówią wówczas o Atlantyckim Niño lub Niña. Zjawisko nie jest ściśle zdefiniowane, ale przyjmuje się, że jeśli 3-miesięczna średnia temperatura powierzchni przez co najmniej 2 kolejne sezony jest o 0,5 stopnia Celsjusza wyższa od średniej długoterminowej, to mamy do czynienia z Atlantyckim Niño, jeśli jest o 0,5 stopnia C niższa, jest to Atlantycka Niña.
      W bieżącym roku w lutym i marcu we wschodniej części równikowego Atlantyku mieliśmy do czynienia z ekstremalnie wysokimi temperaturami wód powierzchniowych. Przekraczały 30 stopni Celsjusza i były najwyższe od 1982 roku. Obecnie zaś, od maja, naukowy obserwują rekordowe ochładzanie się tego obszaru. Temperatura wód spadła nawet ponad 1 stopień Celsjusza. I co najbardziej zaskakujące, ochładzanie to ma miejsce w obliczu słabnących pasatów. A to one powodują upwelling, zatem im są słabsze, tym słabsze powinno być zjawisko podnoszenia się chłodnych wód z głębin. Innymi słowy naukowcy obserwują wyjątkowo szybko rozwijającą się Atlantycką Niñę w sytuacji, która nie sprzyja jej rozwojowi.
      Jak już wspomnieliśmy, o poszczególnych fazach Atlantyckich Niños mówimy przy odchyleniu rzędu 0,5 stopnia Celsjusza od średniej. Wbrew pozorom, jest do duża różnica. Te pół stopnia ma olbrzymi wpływ na poziom opadów w Afryce i Ameryce Południowej. Na przykład w fazie Niño mamy do czynienia ze zmniejszeniem opadów w Sahelu, zwiększeniem w Zatoce Gwinejskiej i zmianami wzorca opadów w północno-wschodniej części Ameryki Południowej. Ze zmianami Niños wiążą się też zmiany wzorca huraganów. Już jakiś czas temu amerykańska NOAA przewidywała, że w bieżącym roku intensywność huraganów będzie powyżej średniej. Prognozę taką opracowano na podstawie warunków panujących w równikowych obszarach Pacyfiku oraz tropikalnych regionach Północnego Atlantyku. Teraz eksperci będą z zainteresowaniem monitorowali, czy Atlantycka Niña wpłynie huragany. 

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Każda kobieta wie, że torebek nigdy za wiele. Różne okazje wymagają wielu kolorów, fasonów i materiałów. Ogromny wybór pozwala na stworzenie wyjątkowych stylizacji, ale nie tylko. Torebka odzwierciedla charakter, osobowość i styl życia. Jak wybrać torebkę, aby jej fason i materiał spełniał wszystkie wymagania?
      !RCOL

      Torebka idealna – modna i wytrzymała
      Najczęściej o wyborze torby decyduje jej wygląd. Widząc torebkę na wystawie czy na stronie internetowej, niemal natychmiast wiesz, że to właśnie ta! Idealny kolor, idealny fason, więc w głowie momentalnie pojawia się tysiąc pomysłów na stylizacje. Często jakość wykonania i materiał schodzą na dalszy plan, a przecież są to czynniki tak samo ważne, jak w przypadku każdej innej rzeczy.
      Torebkę trzeba dotknąć, wypróbować, przymierzyć, a nawet powąchać. Zakupy online dodatkowo tę czynność utrudniają, dlatego istotne jest dokładne czytanie opisu. Ogromną rolę odgrywa materiał, z jakiego została wykonana. Jaki materiał torebki będzie odpowiedni? Wszystko zależy od jej przeznaczenia. Torebka noszona tylko na specjalne okazje, na przykład jako dodatek do wieczorowej sukni, może być delikatniejsza, mniej wytrzymała. Z kolei jeśli ma być używana na co dzień, warto postawić na dobrą jakość, a co się z tym wiąże: solidność, funkcjonalność, odporność, łatwość w utrzymaniu czystości.
      To, co niezbędne - sekret wnętrza torebki
      Torebka powinna pomieścić to, co niezbędne. Problem w tym, że niezbędne jest zazwyczaj… wszystko. W teorii to portfel, klucze, chusteczki do nosa i telefon komórkowy, jednak chyba każda kobieta przyzna, że w praktyce wygląda to zupełnie inaczej. Kosmetyczka, perfumy, woda do picia, przekąska dla dziecka, niespodziewane zakupy… To wszystko często jest dla torebki prawdziwym wyzwaniem, a więc solidność i wytrzymałość są cechami bardzo pożądanymi. Wpływ na nie ma jakość wykonania, a przede wszystkim materiał.
      Znana, sprawdzona marka jest zawsze gwarancją jakości, ale i wśród tańszych modeli można znaleźć atrakcyjną torebkę z porządnego materiału. Skórzane torebki, płócienne, lniane i z mocnej bawełny są wytrzymałe, a przy tym praktyczne i modne. Duży wybór torebek oferuje między innymi sklep CCC, w którym zakupy można zrobić nie tylko stacjonarnie, ale i przez Internet. Szeroki asortyment sklepu – w tym torebki, buty i inne akcesoria – pomaga stworzyć wiele różnych stylizacji.
      Torebki i ich materiały – wady i zalety
      Na szczęście w obecnych czasach nie trzeba dokonywać wyboru pomiędzy atrakcyjnością torebki, a jej solidnością. Nawet lekkie wakacyjne modele też mogą być wytrzymałe, funkcjonalne i odporne na urazy czy plamy. Coraz modniejsze są torebki z dodatkiem poliuretanu, czyli mocnego materiału, który jednocześnie utrzymuje wewnątrz stałą temperaturę. Takie torebki przypominają fakturą miękkie koszyki, czyli modele idealne na lato. Ich elegantsze wersje świetnie pasują do garsonek i długich sukienek. Letnie torebki z plecionki, rafii lub słomy są bardzo modne, jednak mają swoje wady. Plecionka może ulec zniszczeniu mechanicznemu, a także odkształcić się od słońca i wilgoci. Opcją dla nich powoli stają się torby z pianki, gumy lub tworzywa sztucznego.
      Nadal na topie są torebki skórzane. Materiał ten jest przyjemny w dotyku, a także dość wytrzymały, natomiast same torebki pasują do wielu stylizacji i okazji. Skórzane torebki usztywnione są mocniejsze, ale mniej poręczne, w przeciwieństwie do miękkich modeli, które z kolei są bardziej narażone na urazy i przetarcia. Praktycznym rozwiązaniem na co dzień są torebki z płótna, bawełny i podobnych tkanin. Ich zaletą jest lekkość, uniwersalność i spora wytrzymałość, niestety są dosyć trudne w utrzymaniu czystości i bardziej narażone na plamy i przebarwienia. Takie torebki występują w wielu modnych fasonach. Pasują do sportowego, jak i eleganckiego looku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wody na Księżycu jest znacznie mniej, niż dotychczas sądzono, informuje Norbert Schörghofer z Planetary Science Institute w Arizonie, współautor badań, których wyniki opublikowano na łamach Science Advances. Obliczenia przeprowadzone przez Schörghofera i Ralucę Rufu z Southwest Research Insitute w Kolorado, mają olbrzymie znaczenie nie tylko dla zrozumienia historii Księżyca, ale również dla założenia stałej bazy na Srebrnym Globie. Bazy, która ma wspierać załogowe wyprawy na Marsa. Kevin Cannon, geolog z Colorado School of Mines, który prowadzi spis obiecujących miejsc do lądowania i prac górniczych na Księżycu, już zaczął aktualizować ją w oparciu o wyliczenia Schörghofera i Rufu.
      Woda na Księżycu, w postaci lodu, znajduje się w stale zacienionych obszarach księżycowych kraterów. Tylko tam ma szansę przetrwać. Te stale zacienione obszary to jedne z najchłodniejszych miejsc w Układzie Słonecznym. Na wodę możemy liczyć przede wszystkim w głębokich kraterach znajdujących się w pobliżu biegunów. Tam bowiem kąt padania promieni słonecznych wynosi zaledwie 1,5 stopnia. Jednak nie zawsze tak było. Przed miliardami lat oś Księżyca była nachylona pod zupełnie innym kątem, różniącym się od obecnego może nawet o 77 stopni. Taka orientacja wystawiała zaś bieguny na działanie Słońca, eliminując wszelkie zacienione obszary, a co za tym idzie, odparowując znajdujący się tam lód.
      Wiemy, że Księżyc powstał przed około 4,5 miliardami lat w wyniku uderzenia w tworzącą się Ziemię planety wielkości Marsa. Od tego czasu migruje on coraz dalej od nasze planety. Początkowo znajdował się pod przemożnym wpływem sił pływowych Ziemi, obecnie większą rolę odgrywają siły pływowe Słońca i ta właśnie zmiana doprowadziła do zmiany orientacji osi Księżyca. Zasadnicze pytanie brzmi, kiedy do niej doszło. Jeśli wcześniej, to na Księżycu powinno być więcej lodu, jeśli zaś później, lodu będzie mniej.
      Dopiero w 2022 roku astronomowie z Obserwatorium Paryskiego rozwiązali stary problem niezgodności danych geochemicznych z fizycznym modelem oddziaływania sił pływowych. Schörghofer i Rufu skorzystali z pracy Francuzów i utworzyli udoskonalony model pokazujący zmiany osi Księżyca w czasie. To zaś pozwoliło mi stwierdzić, ile lodu może istnieć w obecnych stale zacienionych obszarach.
      Z ich obliczeń wynika, że najstarsze stale zacienione obszary utworzyły się nie więcej niż 3,94 miliarda lat temu. Są zatem znacznie młodsze, niż dotychczas sądzono, a to oznacza, że wody na Księżycu jest znacznie mniej. Nie możemy się już spodziewać, że istnieją tam warstwy czystego lodu o grubości od dziesiątków to setek metrów, mówi Schörghofer.
      Uczony dodaje jednak, że nie należy podchodzić do tych badań wyłącznie pesymistycznie. Dostarczają one bowiem dokładniejszych danych na temat miejsc, w których powinien znajdować się lód. Ponadto z wcześniejszych badań, które Schörghofer prowadził wraz z Paulem Hayne z University of Colorado i Odedem Aharonsonem z izraelskiego Instytut Weizmanna, wynika, że stale zacienionych obszarów jest więcej niż sądzono, a lód może znajdować się nawet w takich, które liczą sobie zaledwie 900 milionów lat. Wnioski płynące z badań są więc takie, że lodu na Księżycu jest znacznie mniej, ale jest on w większej liczbie miejsc.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...