Silikonowa wkładka usprawni gojenie ran cukrzyków
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Po raz pierwszy zaobserwowano, w czasie rzeczywistym i skali molekularnej, jak powstaje woda. Naukowcy z Northwestern University zarejestrowali łączenie się atomów wodoru i tlenu. Obserwacji dokonano w ramach badań, w czasie których uczeni chcieli zrozumieć działanie palladu jako katalizatora reakcji prowadzącej do powstawania wody.
Uzyskanie wody za mocą palladu nie wymaga ekstremalnych warunków, zatem może być wykorzystane w praktyce do pozyskania wody tam, gdzie jest trudno dostępna. Na przykład na innych planetach. Przypomnijmy sobie Marka Watneya, granego przez Matta Damona w „Marsjaninie”. Spalał paliwo rakietowe, by uzyskać wodór, a następnie dodawał do niego tlen. Nasz proces jest bardzo podobny, ale nie potrzebujemy ognia i innych ekstremalnych warunków. Po prostu zmieszaliśmy pallad i gazy, mówi jeden z autorów badań, profesor Vinayak Dravid.
O tym, że pallad może być katalizatorem do generowania wody, wiadomo od ponad 100 lat. To znane zjawisko, ale nigdy go w pełni nie rozumieliśmy, wyjaśnia doktorant Yukun Liu, główny autor badań. Młody uczony dodaje, że do zrozumienia tego procesu konieczne było połączenie analizy struktury w skali atomowej oraz bezpośredniej wizualizacji. Wizualizowanie całego procesu było zaś niemożliwe.
Jednak w styczniu 2024 roku na łamach Science Advances profesor Dravid opisał nowatorką metodę analizowania molekuł gazu w czasie rzeczywistym. Uczony wraz z zespołem stworzyli ultracienką membranę ze szkła, która więzi molekuły gazu w reaktorach o strukturze plastra miodu. Uwięzione atomy można obserwować za pomocą transmisyjnego mikroskopu elektronowego w próżni wysokiej.
Za pomocą nowej metody uczeni zaobserwowali, jak atomy wodoru wnikają do próbki palladu, rozszerzając jej sieć atomową. Po chwili – ku zaskoczeniu uczonych – na powierzchni palladu pojawiły się krople wody. Myślę, że to najmniejsze kiedykolwiek zaobserwowane krople. Tego się nie spodziewaliśmy. Na szczęście nagraliśmy to i możemy udowodnić, że nie oszaleliśmy, cieszy się Liu.
Po potwierdzeniu, że pojawiła się woda, naukowcy zaczęli szukać sposobu na przyspieszenie reakcji. Zauważyli, że najszybciej zachodzi ona, gdy najpierw doda się wodór, później tlen. Atomy wodoru wciskają się między atomy palladu, rozszerzając próbkę. Gdy do całości zostaje dodany tlen, wodór opuszcza pallad, by połączyć się z tlenem, a próbka kurczy się do wcześniejszych rozmiarów.
Badania prowadzone były w nanoskali, ale wykorzystanie większych kawałków palladu pozwoliłoby na uzyskanie większej ilości wody. Autorzy badań wyobrażają sobie, że w przyszłości astronauci mogliby zabierać ze sobą pallad wypełniony wodorem. Gdy będą potrzebowali wody, dodadzą tlen. Pallad jest drogi, ale nasza metoda go nie zużywa. Jedyne, co jest tutaj zużywane, to gaz. A wodór to najpowszechniej występujący gaz we wszechświecie. Po reakcji pallad można wykorzystywać ponownie, mówi Liu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki rzadkiej mutacji genetycznej Jo Cameron żyje bez bólu, jej rany szybciej się goją, a kobieta nigdy nie odczuwa lęku i strachu. Przed dwoma laty naukowcy z University College London (UCL) odkryli u niej zmutowany gen FAAH-OUT, a teraz opisali unikatowy mechanizm molekularny, za pomocą którego mutacja wyłącza ekspresję genu FAAH oraz wpływa na inne szlaki molekularne powiązane z gojeniem się ran i nastrojem. Ich odkrycie może stać się przyczynkiem do nowych prac w obszarach, w których Jo Cameron jest tak wyjątkowa.
Kobieta trafiła pod opiekę genetyków z UCL w 2013 roku, gdy jej lekarz zauważył, że nie odczuwa ona bólu po dużych zabiegach chirurgicznych na biodrze i dłoni. Naukowcy z Londynu przez 6 lat poszukiwali przyczyny tego zjawiska, aż zidentyfikowali gen, który nazwali FAAH-OUT, zawierający rzadką mutację. Połączenie z inną, częściej spotykaną mutacją w genie FAAH, dało Jo unikatowe cechy.
Co interesujące, gen FAAH-OUT znajduje się w „śmieciowym DNA”. To DNA niekodujące, które stanowi aż 98% genomu, a o którym do niedawna sądzono, że nie odgrywa żadnej roli. Ostatnio pojawia się jednak coraz więcej badań wskazujących na to, że „śmieciowe DNA” jest niezwykle ważne, a jedne z nich wskazują, że być może dzięki niemu jesteśmy ludźmi. Teraz okazało się, że FAAH-OUT wpływa na ekspresję genu FAAH, który stanowi część układu endokannabinoidowego i oddziałuje na odczuwanie bólu, nastrój oraz pamięć. Zrozumienie, w jaki sposób FAAH-OUT wpływa na ekspresję FAAH może pomóc np. w opracowaniu nowych leków przeciwbólowych.
Dzięki Jo Cameron naukowcy dowiedzieli się, że FAAH-OUT ma wpływ na ekspresję FAAH, a gdy wpływ ten – tutaj w wyniku mutacji – zostaje znacznie zmniejszony, dochodzi do dużej redukcji poziomu aktywności enzymów FAAH. FAAH-OUT to niewielki punkt na rozległym oceanie, który dopiero zaczęliśmy mapować. Stanowi on molekularną podstawę do pozbycia się bólu, zidentyfikowaliśmy też szlaki molekularne wpływające na nastrój i gojenie się ran. A na to wszystko ma wpływ mutacja w FAAH-OUT. Myślę, że nasze badania będą miały istotny wpływ na takie obszary naukowe jak gojenie się ran, depresja i wiele innych, mówi jeden za autorów badań, doktor Andrei Okorokov.
Analizy pokazały też, że mutacja, którą posiada Jo Cameron, a która wyłączyła FAAH, doprowadziła też do wyłączenia 348 innych genów oraz włączenia 797. Są wśród nich zmiany w szlaku WNT, który jest powiązany z gojeniem się ran. Zaobserwowano na przykład zwiększoną aktywność genu WNT16, który jest wiązany z regeneracją kości. Innymi istotnymi genami, których aktywność została zmieniona są BNDF, wiązany z regulacją nastroju oraz ACKR3, który wpływa na regulację poziomu opioidów. To te zmiany mogą powodować, że Jo Cameron nie czuje niepokoju, strachu czy bólu.
Początkowe odkrycie mutacji genetycznej u Jo Cameron było niezwykle ekscytujące. Ale dopiero teraz zaczyna robić się naprawdę ciekawie. Dzięki dokładnemu zrozumieniu, co dzieje się na poziomie molekularnym możemy próbować zrozumieć, jak działa cały mechanizm biologiczny, a to otwiera drogę do odkrycia leków, które pewnego dnia będą miały olbrzymi wpływ na życie pacjentów, dodaje profesor James Cox.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Instytutu Studiów Biologicznych Salk opracowali technikę, która pozwala bezpośrednio przekształcić komórki otwartych ran w nowe komórki skóry. Podejście bazuje na reprogramowaniu do stanu "macierzystopodobnego" (ang. AAV-based in vivo reprogramming).
Przyda się to w leczeniu różnych uszkodzeń skóry (np. stopy cukrzycowej i oparzeń), a także do przeciwdziałania skutkom starzenia czy badania nowotworów skóry.
Nasze obserwacje stanowią wstępny dowód na regenerację in vivo całej trójwymiarowej tkanki, takiej jak skóra, a nie jak wcześniej wykazano, tylko poszczególnych typów komórek - podkreśla prof. Juan Carlos Izpisua Belmonte.
Wrzody skórne są zazwyczaj leczone chirurgicznie; wrzód pokrywa się przeszczepioną skórą. Gdy jest on jednak wyjątkowo duży, lekarzom może być trudno pozyskać odpowiednią ilość skóry. W takich przypadkach izoluje się komórki macierzyste skóry i po etapie hodowli w laboratorium przeszczepia się je pacjentowi. Procedura ta nie zawsze jest jednak skuteczna i wymaga czasu, co może narażać życie chorego.
Izpisua Belmonte i Masakazu Kurita, który ma doświadczenie w chirurgii plastycznej, wiedzieli, że kluczowym krokiem gojenia ran jest migracja albo transplantacja podstawnych keratynocytów. Te macierzystopodobne komórki są prekursorami dla różnych typów komórek skóry. Niestety, duże rany, w których doszło do utraty licznych warstw skóry, nie mają już podstawnych keratynocytów. Nawet jeśli się goją, komórki namnażające się w tym rejonie biorą głównie udział w zamknięciu rany i stanie zapalnym, a nie odbudowie skóry.
Panowie chcieli więc sprawdzić, czy bez pobierania z ciała da się te inne komórki bezpośrednio przekształcić w podstawne keratynocyty. Chcieliśmy uzyskać skórę w miejscu, gdzie nie było skóry, od której można by zacząć - wyjaśnia Kurita.
By ustalić, co trzeba zmienić, reprogramując, naukowcy zaczęli od porównania poziomów białek w 2 typach komórek: zapalnych i keratynocytach. W ten sposób zidentyfikowali 55 czynników - białek i RNA - potencjalnie zaangażowanych w definiowanie unikatowej tożsamości podstawnych keratynocytów. Później metodą prób i błędów i na drodze dalszych eksperymentów zawęzili listę do 4 czynników, które mogłyby pośredniczyć w konwersji do keratynocytów.
Gdy miejscowo potraktowano nimi wrzody skórne myszy, w ciągu 18 dni rozwinął się tu nabłonek. Z czasem rozrósł się i połączył otaczającą skórę nawet w rozległych zmianach. Podczas testów molekularnych czy genetycznych 3 i 6 miesięcy później wygenerowane komórki zachowywały się jak zdrowe komórki skóry.
By zoptymalizować technikę, naukowcy planują kolejne badania. Chcą też przetestować dodatkowe modele wrzodów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wody oceaniczne na średnich głębokościach (200–1000 m), które są domem dla wielu gatunków ryb, zaczęły w nienaturalnym tempie tracić tlen – ostrzegają chińscy uczeni na łamach pisma Amerykańskiej Unii Geofizycznej. Do roku 2080 aż 70% światowych oceanów może się dusić z powodu braku tlenu spowodowanego zmianami klimatycznymi. Nowe badania pokazały, że w ubiegłym roku doszło do przekroczenia punktu krytycznego utraty tlenu.
Tlen rozpuszczony w oceanach jest potrzebny żyjącym tam zwierzętom do oddychania. Jednak ogrzewające się wody zawierają mniej tlenu. Naukowcy od lat obserwują powolny spadek ilości tlenu w wodach oceanicznych. Jednak najnowsze badania pokazują, że sytuacja jest bardziej dramatyczna, niż sądzono.
Autorzy badań opublikowanych na łamach Geophysical Research Letters wykorzystali modele klimatyczne do sprawdzenia, jak i kiedy poziom utraty tlenu w wodach oceanicznych będzie większy niż naturalna zmienność. Okazało się, że na średnich głębokościach do przekroczenia poziomu naturalnej zmienności doszło prawdopodobnie w 2021 roku. Jeśli to prawda, wpłynie to np. na rybołówstwo na całym świecie. Modele przewidują, że do roku 2080 wszystkie strefy oceaniczne doświadczą większej niż naturalna utraty tlenu.
Na głębokości od 200 do 1000 metrów rozciąga się strefa mezopelagialu. Wiele gatunków komercyjnie poławianych ryb żyje właśnie w tej strefie. Ubytek tlenu oznacza, że ucierpi rybołówstwo i dostawy żywności, nie mówiąc już o stratach środowiskowych.
Wraz z globalnym ociepleniem rośnie temperatura wód oceanicznych. A w ciepłej wodzie rozpuszcza się mniej tlenu, co z kolei zmniejsza mieszanie się poszczególnych warstw wody. Mezopelagial jest szczególnie wrażliwy na ubytek tlenu, gdyż z jednej strony nie jest wzbogacany tlenem z atmosfery oraz fotosyntezy, jak wyżej położone warstwy, a z drugiej to w nim zachodzi większość zużywających tlen procesów rozkładu glonów.
Dla nas to bardzo ważna strefa oceanu, gdyż żyje w niej wiele komercyjnie poławianych gatunków ryb. Ubytek tlenu wpływa też na inne morskie zasoby, ale ryby są dla nas najważniejsze i mają największy wpływ na naszą codzienną dietę, mówi główna autorka badań, Yuntao Zhou z Shanghai Jiao Tong University. Oceanograf Matthew Long z amerykańskiego Narodowego Centrum Badań Atmosferycznych (NCAR), który nie brał udziału w badaniach, komentuje, że badania chińskich uczonych pokazują, jak pilna jest potrzeba zapobiegania zmianom klimatu. Ludzkość zmienia obecnie stan metaboliczny największego ekosystemu na planecie, a konsekwencji tej zmiany nie znamy.
Chińscy naukowcy przyjrzeli się utracie tlenu w epipelagialu (0–200 m), mezopelagialu (200–1000 m) i batypelagialu (1000–4000 m). Poddali analizie matematycznej dane, by sprawdzić, kiedy zmiany w ilości rozpuszczone w nich tlenu będą większe, niż naturalna zmienność. Połączyli je z dwoma modelami klimatycznymi – jednym zakładającym wysoką emisję gazów cieplarnianych przez człowieka i drugim, zakładającym niską emisję.
W obu zbadanych scenariuszach to właśnie mezopelagial jest tą strefą, która najszybciej traci tlen, a utrata występuje na największym obszarze globalnych oceanów. W scenariuszu niskiej emisji proces utraty ponad naturalną zmienność rozpoczyna się 20 lat później, niż w scenariuszu emisji wysokiej. To zaś pokazuje, że ograniczenie emisji może pomóc w opóźnieniu niekorzystnych zmian.
Naukowcy zauważyli tez, że oceany położone bliżej biegunów są bardziej narażone na utratę tlenu. Nie wiadomo, dlaczego tak się dzieje, ale może mieć to związek z faktem, że okolice biegunów ocieplają się najszybciej. Dochodzi też do rozszerzania tropikalnych stref znanych z niskiej zawartości tlenu, mówi Zhou. Strefy o minimalnej zawartości tlenu rozprzestrzeniają się na wyższe szerokości geograficzne, zarówno na północ, jak i południe. To zjawisko, na które powinniśmy zwrócić więcej uwagi, stwierdza uczona. Obecnie nie wiadomo, czy gdyby całkowicie udało się powstrzymać globalne ocieplenie, to czy poziom tlenu w oceanach powrócił do epoki przedprzemysłowej.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.