Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Oceany zaczęły się dusić. Utrata tlenu większa niż naturalne fluktuacje

Recommended Posts

Wody oceaniczne na średnich głębokościach (200–1000 m), które są domem dla wielu gatunków ryb, zaczęły w nienaturalnym tempie tracić tlen – ostrzegają chińscy uczeni na łamach pisma Amerykańskiej Unii Geofizycznej. Do roku 2080 aż 70% światowych oceanów może się dusić z powodu braku tlenu spowodowanego zmianami klimatycznymi. Nowe badania pokazały, że w ubiegłym roku doszło do przekroczenia punktu krytycznego utraty tlenu.

Tlen rozpuszczony w oceanach jest potrzebny żyjącym tam zwierzętom do oddychania. Jednak ogrzewające się wody zawierają mniej tlenu. Naukowcy od lat obserwują powolny spadek ilości tlenu w wodach oceanicznych. Jednak najnowsze badania pokazują, że sytuacja jest bardziej dramatyczna, niż sądzono.

Autorzy badań opublikowanych na łamach Geophysical Research Letters wykorzystali modele klimatyczne do sprawdzenia, jak i kiedy poziom utraty tlenu w wodach oceanicznych będzie większy niż naturalna zmienność. Okazało się, że na średnich głębokościach do przekroczenia poziomu naturalnej zmienności doszło prawdopodobnie w 2021 roku. Jeśli to prawda, wpłynie to np. na rybołówstwo na całym świecie. Modele przewidują, że do roku 2080 wszystkie strefy oceaniczne doświadczą większej niż naturalna utraty tlenu.

Na głębokości od 200 do 1000 metrów rozciąga się strefa mezopelagialu. Wiele gatunków komercyjnie poławianych ryb żyje właśnie w tej strefie. Ubytek tlenu oznacza, że ucierpi rybołówstwo i dostawy żywności, nie mówiąc już o stratach środowiskowych.

Wraz z globalnym ociepleniem rośnie temperatura wód oceanicznych. A w ciepłej wodzie rozpuszcza się mniej tlenu, co z kolei zmniejsza mieszanie się poszczególnych warstw wody. Mezopelagial jest szczególnie wrażliwy na ubytek tlenu, gdyż z jednej strony nie jest wzbogacany tlenem z atmosfery oraz fotosyntezy, jak wyżej położone warstwy, a z drugiej to w nim zachodzi większość zużywających tlen procesów rozkładu glonów.

Dla nas to bardzo ważna strefa oceanu, gdyż żyje w niej wiele komercyjnie poławianych gatunków ryb. Ubytek tlenu wpływa też na inne morskie zasoby, ale ryby są dla nas najważniejsze i mają największy wpływ na naszą codzienną dietę, mówi główna autorka badań, Yuntao Zhou z Shanghai Jiao Tong University. Oceanograf Matthew Long z amerykańskiego Narodowego Centrum Badań Atmosferycznych (NCAR), który nie brał udziału w badaniach, komentuje, że badania chińskich uczonych pokazują, jak pilna jest potrzeba zapobiegania zmianom klimatu. Ludzkość zmienia obecnie stan metaboliczny największego ekosystemu na planecie, a konsekwencji tej zmiany nie znamy.

Chińscy naukowcy przyjrzeli się utracie tlenu w epipelagialu (0–200 m), mezopelagialu (200–1000 m) i batypelagialu (1000–4000 m). Poddali analizie matematycznej dane, by sprawdzić, kiedy zmiany w ilości rozpuszczone w nich tlenu będą większe, niż naturalna zmienność. Połączyli je z dwoma modelami klimatycznymi – jednym zakładającym wysoką emisję gazów cieplarnianych przez człowieka i drugim, zakładającym niską emisję.

W obu zbadanych scenariuszach to właśnie mezopelagial jest tą strefą, która najszybciej traci tlen, a utrata występuje na największym obszarze globalnych oceanów. W scenariuszu niskiej emisji proces utraty ponad naturalną zmienność rozpoczyna się 20 lat później, niż w scenariuszu emisji wysokiej. To zaś pokazuje, że ograniczenie emisji może pomóc w opóźnieniu niekorzystnych zmian.

Naukowcy zauważyli tez, że oceany położone bliżej biegunów są bardziej narażone na utratę tlenu. Nie wiadomo, dlaczego tak się dzieje, ale może mieć to związek z faktem, że okolice biegunów ocieplają się najszybciej. Dochodzi też do rozszerzania tropikalnych stref znanych z niskiej zawartości tlenu, mówi Zhou. Strefy o minimalnej zawartości tlenu rozprzestrzeniają się na wyższe szerokości geograficzne, zarówno na północ, jak i południe. To zjawisko, na które powinniśmy zwrócić więcej uwagi, stwierdza uczona. Obecnie nie wiadomo, czy gdyby całkowicie udało się powstrzymać globalne ocieplenie, to czy poziom tlenu w oceanach powrócił do epoki przedprzemysłowej.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W ciągu ostatnich 20 lat doszło do znacznych zmian koloru oceanów. To globalny trend, którego najbardziej prawdopodobną przyczyną jest globalne ocieplenie, informują naukowcy z MIT, brytyjskiego Narodowego Centrum Oceanograficznego, University of Maine i Oregon State University. Zmiany obejmują aż 56% oceanów, czyli powierzchnię większą niż powierzchnia wszystkich lądów.
      Najbardziej widoczne są zmiany w obszarach równikowych, gdzie kolor wody staje się coraz bardziej zielony. Oznacza to, że dochodzi do zmian ekosystemów na powierzchni, gdyż na kolor wody wpływają żyjące w niej organizmy oraz rozpuszczone minerały. W tej chwili nie wiadomo, jakie konkretnie zmiany w ekosystemie powodują taką zmianą koloru. Naukowcy są pewni jednego – najbardziej prawdopodobną przyczyną zmian jest zmiana klimatu.
      Zmiany takie nie są zaskoczeniem. Współautorka badań, Stephanie Dutkiewicz z MIT od wielu lat prowadzi symulacje komputerowe, które pokazywały, że do takich zmian dojdzie. Fakt, że je teraz mogę obserwować w rzeczywistości nie jest zaskoczeniem. Ale jest to przerażające. Zmiany te są zgodne z tym, co pokazują symulacje dotyczące wpływu człowieka na klimat, stwierdza uczona. To kolejny dowód na to, jak ludzka aktywność wpływa na życie na Ziemi na wielką skalę. I kolejny sposób, w jaki wpływamy na biosferę, dodaje doktor B. B. Cael z Narodowego Centrum Oceanograficznego w Southampton.
      Kolor oceanu zależy od tego, co znajduje się w górnych warstwach wody. Woda głębokiej błękitnej barwie zawiera niewiele życia, a im bardziej zielona, tym więcej w niej organizmów żywych, przede wszystkim fitoplanktonu. Fitoplankton stanowi podstawę morskiego łańcucha pokarmowego. Rozciąga się on od fitoplanktonu, przez kryl, ryby, ptaki morskie po wielkie morskie ssaki. Fitoplankton absorbuje też i zatrzymuje dwutlenek węgla. Dlatego też naukowcy starają się go jak najdokładniej monitorować, by na tej podstawie badać, jak ocean reaguje na zmiany klimatu. Robią to wykorzystując satelity śledzące zmiany chlorofilu poprzez porównanie światła zielonego i niebieskiego odbijanego od powierzchni oceanów.
      Przed około 10 laty jedna z autorek obecnych badań, Stephanie Henson, wykazała, że potrzeba co najmniej 30 lat ciągłych obserwacji chlorofilu, by wyciągnąć wnioski na temat zmian jego koncentracji pod wpływem globalnego ocieplenia. Jest to spowodowane olbrzymimi naturalnymi zmianami oceanicznego chlorofilu rok do roku, więc odróżnienie corocznych zmian naturalnych od długoterminowego trendu powodowanego ociepleniem wymaga długotrwałych obserwacji.
      Z kolei przed 4 laty Dutkiewicz i jej zespół opublikowali artykuł, w którym dowiedli, że naturalne zmiany innych kolorów oceanu są znacznie mniejsze niż zmiany chlorofilu. Zatem – jak dowodzili na podstawie opracowanego przez siebie modelu – korzystając ze zmian chlorofilu i korygując je o zmiany innych kolorów, można wyodrębnić zmiany koloru powodowane ociepleniem już po 20, a nie po 30 latach obserwacji.
      W trakcie najnowszych badań naukowcy przeanalizowali pomiary koloru oceanów zbierane od 21 lat przez satelitę Aqua. Zainstalowany na jego pokładzie instrument MODIS (Moderate Resolution Imaging Spectroradiometer) przygląda się oceanom w 7 zakresach światła widzialnego, w tym w 2 tradycyjnie używanych do monitorowania chlorofilu. Naukowcy najpierw przeprowadzili analizy wszystkich kolorów w różnych regionach w poszczególnych latach. Tak badali zmiany roczne. To pozwoliło im określić naturalną zmienność dla wszystkich 7 zakresów fali. Następnie przyjrzeli się całemu światowemu oceanowi w perspektywie 20 lat. W ten sposób na tle naturalnych dorocznych zmian wyodrębnili trend długoterminowy.
      Chcąc się przekonać, czy trend ten może mieć związek ze zmianami klimatu, porównali go z modelem Dutkiewicz z 2019 roku. Model ten pokazywał, że znaczący trend powinien być widoczny po 20 latach obserwacji, a zmiany kolorystyczne powinny objąć około 50% powierzchni oceanów. Okazało się, że dane z modelu zgadzają się z danymi obserwacyjnymi – trend jest silnie widoczny pod 20 latach, a zmiany objęły 56% powierzchni. To sugeruje, że obserwowany trend nie jest przypadkową wariacją w systemie. Jest on zgodny z modelami antropogenicznej zmiany klimatu, mówi B.B. Cael.
      Mam nadzieję, że ludzie potraktują to poważnie. To już nie tylko model przewidujący, że dojdzie do zmian. Te zmiany zachodzą. Ocean się zmienia, podsumowuje Dutkiewicz.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Spacerowicze odwiedzający jedną z plaż w San Diego mogli ostatnio oglądać... różową wodę. Niezwykły widok nie był jednak niczym groźnym ani niepokojący. Woda została celowo zabarwiona na różowo przez naukowców, którzy badają, w jaki sposób wody rzek mieszają się z wodami oceanów.
      Rzeki i ich estuaria odgrywają ważną rolę w dostarczaniu słodkiej wody oraz osadów i zanieczyszczeń do przybrzeżnych regionów oceanów. Niewiele jednak wiadomo o tym, jak przebiega interakcja lżejszych wód słodkich z cięższymi, gęstszymi i często chłodniejszymi wodami przybrzeżnymi oceanu.
      Od początku roku naukowcy ze Scripps Institution of Oceanography i University of Washington kilkukrotnie kolorowali wody bezpiecznym dla środowiska różowym barwnikiem, by obserwować, jak niewielkie estuarium wpływa na przybrzeżne wody oceanu.
      Jestem bardzo podekscytowana, bo dotychczas nie prowadzono tego typu badań. To naprawdę unikatowy eksperyment, mówi kierująca eksperymentem oceanograf Sarah Giddings. Zgromadziło się tutaj wielu ekspertów z różnych dziedzin. Sądzę, że uzyskamy naprawdę interesujące dalekosiężne wyniki. Połączymy je z wynikami starszych badań oraz z symulacjami komputerowymi. Chcemy zrozumieć, jak rozprzestrzenia się w oceanie woda z niewielkich estuariów, dodaje. Interesuje mnie, w jaki sposób interakcja sił fizycznych – zderzenia fal oceanu z wpływającą doń wodą z rzeki – wpływa na to, co dzieje się z wodą rzeczną, mówi doktor Alex Simpson.
      Barwnik, który zabarwiono wodę rzeki, jest śledzony z lądu, wody i powietrza. Specjalne czujniki zostały umieszczone między innymi na palach wbitych w dno i na samym dnie. Dane zbierane są poprzez pomiary fluoroscencji barwnika, a naukowcy mierzą prądy oceaniczne, wysokość fal, zasolenie i temperaturę wody oraz badają ich zmiany w czasie i wpływ na nie wód słodkich. W ten sposób zyskają informację o konkretnym miejscu badań, ale dzięki temu lepiej można będzie zrozumieć, jak niewielkie i średniej wielkości estuaria wpływają na rozprzestrzenianie się osadów, zanieczyszczeń, narybku i innych istotnych elementów środowiska przybrzeżnego.
      Wiele z wcześniejszych badań tego typu skupiało się na dużych rzekach, dlatego też niewiele wiemy o mniejszych ciekach wodnych. Na miejsce eksperymentów wybrano Los Peñasquitos Lagoon, gdyż jest to bardzo reprezentatywny przykład niewielkiego estuarium, z którego woda przedostaje się na dość jednorodne wybrzeże.
      Barwnik wypuszczany jest w czasie odpływu, gdyż naukowcy chcą mieć gwarancję, że zostanie on poniesiony w głąb oceanu. Gołym okiem widać go przez wiele godzin, a instrumenty naukowe są w stanie wykryć go przez około 24 godziny.
      Badania prowadzone są w ramach projektu Plumes in Nearshore Conditions (PiNC).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
      Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
      Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
      MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
      Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
      MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
      Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
      Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
      MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
      Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance dokonał kolejnego ważnego kroku w kierunku załogowej eksploracji Marsa. Znajdujący się na nim instrument MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment) wykorzystał bogatą w węgiel atmosferę Marsa do wytworzenia tlenu. Udany eksperyment przeprowadzono przed dwoma dniami, 20 kwietnia. Bez możliwości produkcji i przechowywania tleny na Marsie trudno będzie myśleć o załogowej misji na Czerwoną Planetę.
      To krytyczny krok w kierunku zamiany dwutlenku węgla na tlen na Marsie. MOXIE ma jeszcze sporo do roboty, ale uzyskane właśnie wyniki są niezwykle obiecujące, gdyż pewnego dnia chcemy wysłać ludzi na Marsa. Tlen to nie tylko coś, czym oddychamy. Napędy rakietowe zależą od tlenu, a przyszłe misje załogowe będą uzależnione od produkcji na Marsie paliwa, które pozwoli astronautom wrócić do domu, mówi Jim Reuter dyrektor w Space Technology Mission Directorate (STMD).
      Inżynierowie obliczają, że do przywiezienia 4 astronautów z Marsa na Ziemię rakieta będzie potrzebowała 7 ton paliwa i 25 ton tlenu. To znacznie więcej, niż potrzeba ludziom do oddychania. Ci sami astronauci podczas rocznego pobytu na Marsie zużyją może 1 tonę tlenu, mówi Michael Hecht z Massachusetts Institute of Technology.
      Przewożenie 25 ton tlenu z Ziemi na Marsa byłoby bardzo trudnym i kosztownym przedsięwzięciem. Znacznie łatwiej będzie przetransportować większą wersję MOXIE, 1-tonowe urządzenie, które na miejscu wyprodukuje tlen potrzebny do powrotu.
      Atmosfera Marsa w 96% składa się z dwutlenku węgla. MOXIE oddziela atomy tlenu od molekuł dwutlenku węgla, uwalniając do atmosfery Marsa tlenek węgla. Konwersja odbywa się w temperaturze około 800 stopni Celsjusza, dlatego MOXIE jest zbudowany ze specjalnych materiałów, w tym wydrukowanych w 3D stopów aluminium, w których odbywa się ogrzewanie i chłodzenie gazów oraz aerożelu działającego jak izolacja. Z zewnątrz MOXIE pokryte jest cienką warstwą złota, które zatrzymuje promieniowanie podczerwone wewnątrz urządzenia, chroniąc w ten sposób inne elementy łazika Perseverance.
      Podczas pierwszego testu MOXIE wytworzył około 5 gramów tlenu, co wystarczyłoby człowiekowi na około 10 minut oddychania. Urządzenie jest w stanie wytworzyć do 10 gramów tlenu na godzinę.
      Przeprowadzony właśnie test miał pokazać, czy urządzenie bez szwanku przetrwało start, podróż i lądowanie na Marsie. NASA chce jeszcze co najmniej 9-krotnie prowadzić testy MOXIE. To nie jest po prostu pierwsze urządzenie, które wyprodukowało tlen na innej planecie. To pierwsza technologia tego typu, która ma wspomóc przyszłe misje wykorzystując lokalnie występujące zasoby, stwierdza Trudy Kortes odpowiedzialna w STMD za demonstracje technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jednym z najważniejszych odkryć dokonanych w ciągu ostatnich 25 lat było stwierdzenie, że w Układzie Słonecznym istnieją światy, gdzie pod powierzchnią skał i lodu kryje się ocean. Takimi obiektami są księżyce wielkich planet jak Europa, Tytan czy Enceladus. Teraz S. Alan Stern z Southwest Research Institute przedstawił hipotezę mówiącą, że takie światy z wewnętrznym ciekłym oceanem (IWOW) są powszechne we wszechświecie i znacząco zwiększają one liczbę miejsc, w których może istnieć życie. Dzięki nim może ono bowiem występować poza wąską ekosferą.
      Od dawna wiadomo, że planety takie jak Ziemia, z oceanami na powierzchni, muszą znajdować się w ekosferze swoich gwiazd, czyli w takiej odległości od nich, że gdzie temperatura pozwala na istnienie wody w stanie ciekłym. Jednak IWOW mogą istnieć poza ekosferą. Co więcej, obecne tam życie może być znacznie lepiej chronione niż życie na Ziemi. W światach taki jak nasz życie narażone jest na wiele zagrożeń, od uderzeń asteroidów przez niebezpieczne rozbłyski słoneczne po eksplozje pobliskich supernowych.
      Stern, który zaprezentował swoją hipotez podczas 52. dorocznej Lunar and Planetary Science Conference, zauważa, że światy z wewnętrznym ciekłym oceanem” zapewniają istniejącemu tam życiu lepszą stabilność środowiskową i są mniej narażone na zagrożenia ze strony własnej atmosfery, gwiazdy, układu planetarnego czy galaktyki niż światy takie jak Ziemia, z oceanem na zewnątrz. IWOW są bowiem chronione przez grubą, liczącą nawet dziesiątki kilometrów, warstwę lodu i skał.
      Uczony zauważa ponadto, że warstwa ta chroni potencjalnie obecne tam życie przed wykryciem jakąkolwiek dostępną nam techniką. Jeśli więc w takich światach istnieje życie i jeśli może w nich rozwinąć się inteligentne życie to – jak zauważa Stern – istnienie IWOW pozwala na poradzenie sobie z paradoksem Fermiego. Jego twórca, Enrico Fermi, zwrócił uwagę, że z jednej strony wszystko wskazuje na to, że wszechświat powinien być pełen życia, w tym życia inteligentnego, a my dotychczas nie mamy dowodu na jego istnienie. Ta sama warstwa, która tworzy w takich światach stabilne i bezpieczne środowisko jednocześnie uniemożliwia wykrycie tego życia, mówi Stern.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...