Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Islandzki lodowiec uwalnia duże ilości metanu

Rekomendowane odpowiedzi

Z jednego z islandzkich lodowców przedostają się do atmosfery duże ilości metanu. Naukowcy odkryli, że z lodowca Sólheimajökull, który spływa z wulkanu Katla, w miesiącach letnich do atmosfery przedostaje się do 41 ton metanu dziennie.

Badania, prowadzone pod kierunkiem uczonych z Lancaster to pierwsze badnia terenowe pokazujące taką skalę emisji metanu z lodowców. To olbrzymia ilość, która z wody z roztapiającego się lodowca trafia do atmosfery. Emisja te jest znacząco wyższa niż średnia emisja metanu z rzek niepochodzących z lodowców. Jest ona porównywalna z emisją z niektórych uwalniających najwięcej metanu terenów podmokłych. W sumie wulkan tem emituje ponad 20-krotnie więcej metanu niż wszystkie europejskie wulkany razem wzięte, mówi doktor Peter Wynn.

Metan to 28-krotnie silniejszy gaz cieplarniany niż CO2. Jest zatem niezwykle ważne, byśmy wiedzieli jak najwięcej o źródłach emisji metanu i o tym, jak mogą się one zmienić w przyszłości, dodaje uczony.

Środowisko naukowe sprzecza się, czy lodowce emitują metan czy też nie. U podnóża lodowców istnieją idealne warunki do produkcji metanu, są ta mikroorganizmy, materia organiczna, woda i mało tlenu oraz nieprzenikalna pokrywa lodowa, która pozwala na uwięzienie metanu. Nikt jednak dotychczas nie badał szczegółowo tego zagadnienia, więc dostarczyliśmy najsilniejszych dowodów, że lodowce emitują metan.

Nowe badania bazują na wcześniejszych prowadzonych przez doktor Rebeccę Burns w czasach, gdy była jeszcze doktorantką. Uczona pobierała próbki wody z jeziora znajdującego się na krawędzi lodowca Sólheimajökull i badała w nich stężenie metanu. Chcąc zaś upewnić się, że metan nie został uwolniony ze środowiska, porównywała jego poziom z poziomem w okolicznych osadach i innych rzekach. Uzyskane wyniki wskazywały, że metan powstaje pod lodowcem. Największą koncentrację gazu odkryto w miejscu, gdzie wypływa woda spod lodowca, która następnie zasila jezioro. To wskazuje, że źródło metanu musi znajdować się pod lodowcem, wyjaśnia Wynn.

Naukowcy wykorzystali spektrometrię gazową by uzyskać unikatowy odcisk palca metanu, co potwierdziło, że jest on produkowany przez mikroorganizmy znajdujące się pod lodowcem. Jednak tutaj dodatkowo mamy wulkan. Sądzimy, że mimo iż sam wulkan nie emituje metanu, to zapewnia on warunki, dzięki którym mikroorganizmy mogą się rozwijać i produkować metan.
W normalnych warunkach gdy metan styka się z tlenem powstaje dwutlenek węgla, a metan znika. W przypadku lodowców źródłem tlenu jest woda i po kontakcie z nią metan również znika.

Jednak w lodowcu Sólheimajökull zachodzą inne procesy. Gdy woda z topiącego się lodowca dociera do podłoża styka się tam z gazami wulkanicznymi, które obniżają w niej zawartość tlenu. Przez to nie cały metan, który się z nią zetknie jest zmieniany na CO2. Ciepło z Katli może znacząco wspomagać generowanie metanu przez mikroorganizmy, możemy postrzegać ten wulkan jako gigantyczny inkubator mikroorganizmów, stwierdza współautor badań doktor Hugh Tuffen.

Niedawno odkryto, że Katla emituje olbrzymie ilości CO2. Znajduje się w pierwszej piątce światowych wulkanów emitujących ten gaz. Katla to bardzo, bardzo interesujący wulkan, dodaje Tuffen.

Doktor Burns dodaje, że na Islandii i Antarktyce znajduje się wiele pokrytych lodem wulkanów i systemów geotermalnych. Jeśli, z powodu globalnego ocieplenia, zgromadzony pod lodem metan znajdzie drogę ucieczki, to w najbliższej przyszłości możemy obserwować znaczący wzrost emisji metanu z mas lodowych. Naukowcy dodają jednak, że wciąż dobrze nie rozumiemy pochodzenia i wpływu na atmosferę metanu pochodzącego z takich właśnie źródeł. Sądzą, że o ile może dojść do znacznych wzrostów emisji metanu spod lodów, to może być to krótkotrwałe zjawisko, gdyż w miarę jak lód będzie zanikał, zanikały będą też warunki, w jakich metan ten powstaje.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, KopalniaWiedzy.pl napisał:

do 41 ton metanu dziennie

 

4 godziny temu, KopalniaWiedzy.pl napisał:

Katla emituje olbrzymie ilości CO2

Miejmy nadzieję, że ma na to koncesję i opłacone limity emisji w EU. A nie sorry, on nie jest w EU, już mi ulżyło :( A gdyby tak polskie CO2 z węgla podprowadzić do wulkanu rurociągiem, to prąd znów byłby tani.

  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Licząc że metan jest 28-krotnie silniejszym gazem cieplarnianym niż CO2 mnożymy 41 ton metanu który się wydobywa z tego wulkanu razy 28 to daje  ekwiwalent 1 148 CO2 na dobę 

Elektrownia Opole moc (tylko nowch "czystych" bloków)  950 MW , emisja CO2 = 691 kg/MWh ( patrz tabela poniżej) co przy maksymalnej mocy daje 656,45 tony na godzinę lub 15754,8 ton  na dobę.

Wniosek: 13 takich nieaktywnych wulkanów nie starczyły by  ukryć "moc" gazów cieplarnianych jednej elektrowni w Polsce.

 

image.png.742a5bbe4fbd0bfde8803035024d876a.png

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dywersyfikację wg mnie priorytet powinien być nastepujacy: atom, slońce wiatr, woda,  baterie dla 3 wczesniejszych, długo, długo nic, gaz, długo, długo nic, węgiel.

  • Haha 1
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Z wszystkimi wadami atomu i tak jest 1000x lepszy od węgla.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 minut temu, BOXIN napisał:

Skutki węgla są odwracalne w kilku pokoleniach,

Może jakiś filmik z youtuba,  jako "naukowy" dowód rzeczowy?:D 

  • Negatyw (-1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 minut temu, 3grosze napisał:

Może

Arkę Noego zbudował amator, a Titanica profesjonaliści. A tobie sama wiara nie wystarczy, zawsze potrzebujesz linka? Na istnienie Boga też?

Edytowane przez BOXIN

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Proponuje zestawienie regionów gdzie jest zwiększona wykrywalność nowotworów do regionów gdzie są elektrownie atomowe podejrzewam że trend będzie wręcz odwrotny niż przewidujesz. Później zrób to samo zestawienie z regionami gdzie przemysł jest oparty o węgiel. 

Oczywiście że elektrownie atomowe mają wady, i to jest wyzwanie dla inżynierów. Węgiel jako paliwo jest prymitywny, szkodliwy i w naszych warunkach drogi.

Z wikipedii o najwiekszej kopalni (odkrywkowa) w USA

"Annual Production at North Antelope Rochelle was 107.7 million tons in 2012 ..."

"Coal mining in Poland produced 144 million metric tons of coal in 2012 ... "

W tej kopalni z USA pracuje nieco ponad 1000 osób 

w Polsce ponad  w 2012 ponad 50 tysiecy  ( i działało około 200 związków zawodowych) 

Wniosek jest prosty powinno się zrezygnować z węgla w Polsce i powoli wygaszać kopalnie a nie inwestować w elektrownie węglowe. Niestety z OZE jeszcze w tej chwili nie można podtrzymać produkcji energii elektrycznej dlatego własnie Atom jest u mnie na pierwszym miejscu.

Znalezione obrazy dla zapytania zatrudnienie w górnictwie wÄgla kamiennego

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
10 minut temu, dexx napisał:

trend będzie wręcz odwrotny

Poproszę o dane trendu a nie przypuszczenia. Ja też jestem za energetyką jądrową, ale fuzyjną, a ta obecna jest niestety do bani. Zapomniałeś o geotermii na jakiej stoi Polska. Z samej geotermii możemy mieć tyle prądu i ciepłej wody, że tak naprawdę nie potrzebujemy jakichkolwiek innych elektrowni.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
48 minutes ago, BOXIN said:

Poproszę o dane trendu a nie przypuszczenia. Ja też jestem za energetyką jądrową, ale fuzyjną, a ta obecna jest niestety do bani. Zapomniałeś o geotermii na jakiej stoi Polska. Z samej geotermii możemy mieć tyle prądu i ciepłej wody, że tak naprawdę nie potrzebujemy jakichkolwiek innych elektrowni.

Czytałem opracowanie na ten temat, ale nie mogłem teraz na szybko znaleźć. Wnioski były dosyć oczywiste, elektrownie atomowe budowane są głownie w rozwiniętych regionach gdzie opieka lekarska jest dobra i pozostałe gałęzie przemysłu w miarę czyste. Co za tym idzie, nawet jeśli jest jakikolwiek wpływ reaktorów atomowych na występowanie nowotworów, to jest mniejszy niż przy energetyce węglowej.

W pozostałej kwestii Krzychoo mnie uprzedził :). Można sobie bajać o alternatywach, ale do rozwoju kraju potrzebna jest energia elektryczna i geotermia nic w tej kwestii nie pomoże, a fuzja to może za 30 - 40 lat. 

Elektrownie atomowe powinny być podstawą  energetyki i pracować cały czas w pełni obciążone resta zapotrzebowania powinna być pokryta przez OZE + baterie a dodatkowo powinniśmy budować elektrownie gazowe które potrafią w miarę szybko reagować na zmiany zapotrzebowania. Bezwładność procesu w elektrowniach węglowych jest zbyt duża przez co i duża część energii cieplej idzie w komin.

Edytowane przez dexx

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Atom jest dobry dla przemysłu i dużych aglomeracji, moim zdaniem przyszłościowe są rozwiązania mieszane i rozproszone.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

5 hours ago, Krzychoo said:

Atom jest dobry dla przemysłu i dużych aglomeracji, moim zdaniem przyszłościowe są rozwiązania mieszane i rozproszone.

Ja widzę to tak

Sieci energetyczne są połączone, jest pewien minimalny poziom zużycia i ten powinien być prawie w całości pokryty z atomu, tak żeby elektrownie te pracowały w swoim optymalnym punkcie nawet przy najniższym zużyciu energii.  Następnie powinniśmy dążyć żeby OZE + baterie pokrywało resztę zapotrzebowania a w razie braku słońca / wiatru elektronie gazowe przejmują obciążenie sieci. 

Dodatkowo państwo powinno wspierać rozproszone instalacje OZE  tak żeby każde gospodarstwo / firma produkowały tle energii ile średnio zużywają tak żeby minimalizować straty na przesyle. Powiedzmy ze obecny program prosumenta próbuje coś takiego wdrożyć, ale w początkowym okresie wydaje się zasadne umożliwienie jednak sprzedaży tej energii, a jak osiągniemy jak kraj jakiś rozsądny poziom procentowy można wycofać się do zwykłego prosumenta,  

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wysokogórskie obszary Azji – głównie Himalaje i Tybet, ale też Karakorum, Hindukusz czy Pamir – zwane są „trzecim biegunem”, gdyż zawierają największe rezerwy lodu poza Arktyką i Antarktyką. Znajdują się tam dziesiątki tysięcy lodowców, od których zależy byt 1,5-2 miliardów ludzi. Lodowce zapewniają im wodę do picia, generowania energii i na potrzeby rolnictwa. Nie od dzisiaj wiadomo, że w wyniku globalnego ocieplanie utrata lodu przez te lodowce przyspiesza. Obecnie każdego roku tracą one ponad 22 gigatony (miliardy ton) lodu rocznie. Naukowcy z University of Utah i Virginia Tech dowiedli właśnie, że zmiany zachodzące w występowaniu monsunów w Azji Południowej, również przyspieszają topnienie lodowców „trzeciego bieguna”.
      Główny autor badań, Sonam Sherpa z University of Utah mówi, że jeśli intensywność monsunów oraz czas ich początku i końca nadal będą ulegały zmianie, może to przyspieszyć topnienie lodowców i zagrozić życiu setek milionów ludzi. Lodowce są bowiem pewnym, stabilnym i przewidywalnym źródłem wody. Jeśli ich zabraknie, to w przyszłości ludzie będą musieli polegać na znacznie mniej pewnych opadach deszczu i śniegu. To zaś będzie groziło niedoborami wody i suszami w regionach, w których lodowce zapewniają wodę ponad 1,5 miliardowi ludzi.
      Lodowce w wysokich górskich partiach Azji akumulują masę latem. Niskie temperatury panujące na dużych wysokościach powodują, że niesiona monsunami wilgoć opada w postaci śniegu, zwiększając masę lodowców. Lodowce mogą tracić masę albo z powodu szybszego niż zwykle topnienia, albo zmniejszenia się opadów. Globalne ocieplenie już powoduje, że lodowce szybciej topnieją. Teraz dochodzą do tego niepokojące zmiany w monsunach. Mogą one spowodować skrócenie sezonu opadów, zmniejszenie ich ilości czy też zamianę opadów śniegu w deszcz, który dodatkowo przyspiesza topnienie.
      Szybsze wycofywanie się lodowców niesie też za sobą ryzyko gwałtownych, niespodziewanych powodzi powodowanych przez jeziora lodowcowe. Jeziora takie powstają na przedpolach lub powierzchni lodowca. Tworzą się za moreną, barierą z lodu czy w zagłębieniu w powierzchni lodowca. W wyniku topnienia lodu wewnątrz bariery, jej erozji wewnętrznej, może dojść do gwałtownego pęknięcia takiej naturalnej tamy. Mamy więc tutaj do czynienia nie tylko z długoterminowym ryzykiem braku wody, ale też z codziennymi zagrożeniami dla położonych w dolinach wsi, dróg, mostów i wszelkiej innej infrastruktury.
      Najważniejszymi wnioskami, płynącymi ze wspomnianych badań jest spostrzeżenie, że w środkowych i zachodnich Himalajach – gdzie lodowce zwykle przyrastają latem – utrata lodu spowodowana jest przez coraz częściej zdarzające się opady deszczu; na wschodzie Himalajów za utratą lodowców odpowiadają zmniejszone opady śniegu; powtarzające się cykle wycofywania się lodowców są powiązane z cyklami monsunów.
      Wyniki badań zostały opublikowane w artykule Investigating the Influence of Climate Seasonality on Glacier Mass Changes in High Mountain Asia via GRACE Observations.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Hawai'i ostrzegają, że do roku 2080 rosnący poziom oceanów zacznie zagrażać słynnym moai z Wyspy Wielkanocnej. Z artykułu opublikowanego na łamach Journal of Cultural Heritage dowiadujemy się, że za nieco ponad 50 lat poziom oceanów wzrośnie na tyle, że sezonowo fale będą dosięgały największej platformy ceremonialnej (ahu) na Wyspie, Ahu Tongariki, na której ustawionych jest 15 posągów, w tym najcięższe moai, jakie kiedykolwiek powstały na wyspie. Ponadto wody oceaniczne zagrożą 51 innym zabytkom.
      Główny autor badań, doktorant Noah Paoa i jego zespół stworzyli szczegółowy wirtualny obraz wybrzeża i symulowali oddziaływanie fal morskich w różnych przewidywanych dla przyszłości scenariuszach wzrostu poziomu oceanów. Niestety, z naukowego punktu widzenia, wyniki naszej pracy nie są zaskakujące. Wiemy, że wzrost poziomu oceanów zagraża wybrzeżom na całym świecie. Nie pytaliśmy, czy dane miejsca zostaną zagrożone, ale kiedy i jak poważne będzie to zagrożenie. Odkrycie, że fale morskie mogą dosięgnąć Ahu Tongariki do roku 2080 pokazuje, że należy rozpocząć dyskusję na ten temat i zastanowić się nad planami na przyszłość, mówi uczony.
      Wzrost poziomu oceanów to poważny problem dla wybrzeży na całym świecie oraz dla znajdującego się tam dziedzictwa kulturowego. Z podobnym problemem już w najbliższym czasie będą zmagały się i Hawaje i wszystkie inne wyspy Pacyfiku. Niebezpieczeństwo wisi nad świętymi miejscami, świątyniami czy cmentarzami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Barcelony i Corku opublikowali najbardziej szczegółową mapę podmorskich kanionów Antarktyki. Zawiera ona 332 kaniony, niektóre z nich o głębokości ponad 4000 metrów. Katalog, wspólne dzieło uczonych z Universitat de Barcelona i University College Cork, zawiera informacje o pięciokrotnie większej liczbie kanionów niż poprzednie podobne zestawy danych. A w towarzyszącym mu artykule na łamach Marine Geology uczeni wykazali, że kaniony mogą mieć większe niż przypuszczano znaczenie dla cyrkulacji wód oceanicznych, zmniejszania się pokrywy morskiego lodu oraz zmian klimatu.
      Kaniony odgrywają niezwykle istotną rolę w transporcie osadów i substancji odżywczych z wybrzeży do głębokich partii oceanów, łączą płytkie i głębokie obszary oceanów, tworzą bogate siedliska dla morskiego życia. Dotychczas na całym globie zidentyfikowano około 10 000 podmorskich kanionów, jednak prawdopodobnie jest ich znacznie więcej. Pomimo ich wielkiego wpływu na ekologię, geologię czy oceanografię, struktury te są słabo znane, szczególnie leżące w obszarach poarnych.
      Kaniony w Arktyce i Antarktyce są podobne do kanionów z innych obszarów planety, ale zwykle są większe i głębsze z powodu długotrwałego oddziaływania lodu oraz olbrzymich ilości osadów transportowanych przez lodowce z szelfu kontynentalnego, mówi David Amblàs. Ponadto antarktyczne kaniony tworzą się głównie w wyniku działalności prądów zawiesinowych, gdzie gęstsza od otoczenia zawiesina gwałtownie spływa w dół pod wpływem grawitacji. Te silne prądy, zasilane w osady przez lodowce, rzeźbią w dnie wielkie kaniony.
      Zdaniem naukowców, najbardziej interesującym aspektem ich badań jest odnotowanie różnic pomiędzy kanionami powstającymi w dwóch ważnych regionach Antarktyki. W Antarktyce Wschodniej kaniony są bardziej rozbudowane, rozgałęzione, tworząc wielkie systemy o przekroju w kształcie litery U. To sugeruje, że powstały w wyniku długotrwałego oddziaływania lodowców i wielkiego wpływu procesów erozji i sedymentacji. Z kolei w Antarktyce Zachodniej kaniony są krótsze, mają bardziej strome brzegi, a ich przekrój przypomina literę V. Spostrzeżenie to jest wsparciem dla hipotezy, że lądolód Arktyki Wschodniej – największy lądolód na Ziemi – powstał wcześniej. Dotychczas hipoteza ta miała wsparcie w badaniu osadów, teraz kolejnym dowodem jest geomorfologia dna morskiego.
      Antarktyczne kaniony ułatwiają wymianę wody między szelfem kontynentalnym, a głębokimi partiami oceanu. Dzięki nim zimne gęste wody z okolic lądolodu spływają w dół i tworzą AABW (Antarctic Bottom Water), masę wody odgrywającą ważną rolę w światowej cyrkulacji oceanicznej. Ponadto kaniony kierują ciepłe wody, takie jak CDW (Circumpolar Deep Water) z Pacyfiku i Oceanu Indyjskiego w kierunku szelfu Antarktyki, podgrzewając lód i prowadząc do jego topnienia.
      Autorzy badań zauważają, że obecne modele cyrkulacji oceanicznej niedokładnie odtwarzają lokalne procesy fizyczne zachodzące między masami wody a kanionami, przez co mają ograniczoną możliwość przewidywania zmian zachodzących w oceanach i atmosferze.
      Źródło: The geomorphometry of Antarctic submarine canyons

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W środowisku naukowym od dawna trwa debata, czy w czasie okresów największego ochłodzenia Arktyka była cała pokryta lodowcem szelfowym o grubości dochodzącym do 1 kilometra. O istnieniu takiego lodowca ma świadczyć podmorski krajobraz Arktyki i dane geochemiczne. Międzynarodowy zespół naukowy z Norwegii, Niemiec i Wielkiej Brytanii poinformował na łamach Science Advances, że zmiany bioproduktywności wody nie uprawniają do stwierdzenia, by w czasie ostatnich 750 tysięcy lat w Arktyce istniał lodowiec rozciągający się mniej więcej od Svalbardu po Islandię.
      Naukowcy zbadali próbki pobrane z dna morskiego na północny zachód od Svalbardu i na północ od Islandii. Analizowali znajdujące się tam chemiczne ślady obecności glonów sprzed tysiącleci. Niektóre z tych glonów żyją w otwartych wodach, inne pod sezonowym lodem, który znika co roku. Badania pokazały, że życie istniało tam nawet w najzimniejszych okresach. To oznacza, że w powierzchni musiało docierać światło, wody były otwarte. Takie ślady by nie istniały, gdyby cała Arktyka była pokryta kilometrową warstwą lodu, mówi główny autor badań, Jochen Knies z Arktycznego Uniwersytetu Norwegii.
      Jednym z kluczowych dowodów była obecność molekuły IP25 wytwarzanej przez glony żyjące pod sezonowym lodem. Jej ciągła obecność pokazuje, że lód regularnie pojawiał się i znikał. Naukowcy, chcąc zweryfikować swoje odkrycie, przeprowadzili symulacje komputerowe pokazujące warunki panujące w Arktyce w czasie szczytu ostatniej epoki lodowej przed 21 tysiącami lat oraz podczas jeszcze większego ochłodzenia sprzed 140 tysięcy lat, gdy znaczne części Arktyki pokrywał lodowiec szelfowy. Modele potwierdziły to, co znaleźliśmy w osadach. Nawet w najbardziej chłodnych okresach, ciepłe wody Atlantyku wciąż wpływały do Arktyki. Dzięki temu części oceanu nie zamarzły, dodaje Knies.
      Autorzy badań uważają, że przez cały badany przez nich okres jedynym momentem, gdy cały Ocean Arktyczny mógł być pokryty jednym wielkim lodowcem, nastąpił być może około 650 tysięcy lat temu. Zaobserwowali bowiem gwałtowny spadek zapisu aktywności biologicznej w osadach z tego okresu. Jednak nawet jeśli tak było, to zjawisko takie było krótkotrwałe.
      Źródło: Seasonal sea ice characterized the glacial Arctic-Atlantic gateway over the past 750,000 years, https://www.science.org/doi/10.1126/sciadv.adu7681

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...