Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' metan'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Z jednego z islandzkich lodowców przedostają się do atmosfery duże ilości metanu. Naukowcy odkryli, że z lodowca Sólheimajökull, który spływa z wulkanu Katla, w miesiącach letnich do atmosfery przedostaje się do 41 ton metanu dziennie. Badania, prowadzone pod kierunkiem uczonych z Lancaster to pierwsze badnia terenowe pokazujące taką skalę emisji metanu z lodowców. To olbrzymia ilość, która z wody z roztapiającego się lodowca trafia do atmosfery. Emisja te jest znacząco wyższa niż średnia emisja metanu z rzek niepochodzących z lodowców. Jest ona porównywalna z emisją z niektórych uwalniających najwięcej metanu terenów podmokłych. W sumie wulkan tem emituje ponad 20-krotnie więcej metanu niż wszystkie europejskie wulkany razem wzięte, mówi doktor Peter Wynn. Metan to 28-krotnie silniejszy gaz cieplarniany niż CO2. Jest zatem niezwykle ważne, byśmy wiedzieli jak najwięcej o źródłach emisji metanu i o tym, jak mogą się one zmienić w przyszłości, dodaje uczony. Środowisko naukowe sprzecza się, czy lodowce emitują metan czy też nie. U podnóża lodowców istnieją idealne warunki do produkcji metanu, są ta mikroorganizmy, materia organiczna, woda i mało tlenu oraz nieprzenikalna pokrywa lodowa, która pozwala na uwięzienie metanu. Nikt jednak dotychczas nie badał szczegółowo tego zagadnienia, więc dostarczyliśmy najsilniejszych dowodów, że lodowce emitują metan. Nowe badania bazują na wcześniejszych prowadzonych przez doktor Rebeccę Burns w czasach, gdy była jeszcze doktorantką. Uczona pobierała próbki wody z jeziora znajdującego się na krawędzi lodowca Sólheimajökull i badała w nich stężenie metanu. Chcąc zaś upewnić się, że metan nie został uwolniony ze środowiska, porównywała jego poziom z poziomem w okolicznych osadach i innych rzekach. Uzyskane wyniki wskazywały, że metan powstaje pod lodowcem. Największą koncentrację gazu odkryto w miejscu, gdzie wypływa woda spod lodowca, która następnie zasila jezioro. To wskazuje, że źródło metanu musi znajdować się pod lodowcem, wyjaśnia Wynn. Naukowcy wykorzystali spektrometrię gazową by uzyskać unikatowy odcisk palca metanu, co potwierdziło, że jest on produkowany przez mikroorganizmy znajdujące się pod lodowcem. Jednak tutaj dodatkowo mamy wulkan. Sądzimy, że mimo iż sam wulkan nie emituje metanu, to zapewnia on warunki, dzięki którym mikroorganizmy mogą się rozwijać i produkować metan. W normalnych warunkach gdy metan styka się z tlenem powstaje dwutlenek węgla, a metan znika. W przypadku lodowców źródłem tlenu jest woda i po kontakcie z nią metan również znika. Jednak w lodowcu Sólheimajökull zachodzą inne procesy. Gdy woda z topiącego się lodowca dociera do podłoża styka się tam z gazami wulkanicznymi, które obniżają w niej zawartość tlenu. Przez to nie cały metan, który się z nią zetknie jest zmieniany na CO2. Ciepło z Katli może znacząco wspomagać generowanie metanu przez mikroorganizmy, możemy postrzegać ten wulkan jako gigantyczny inkubator mikroorganizmów, stwierdza współautor badań doktor Hugh Tuffen. Niedawno odkryto, że Katla emituje olbrzymie ilości CO2. Znajduje się w pierwszej piątce światowych wulkanów emitujących ten gaz. Katla to bardzo, bardzo interesujący wulkan, dodaje Tuffen. Doktor Burns dodaje, że na Islandii i Antarktyce znajduje się wiele pokrytych lodem wulkanów i systemów geotermalnych. Jeśli, z powodu globalnego ocieplenia, zgromadzony pod lodem metan znajdzie drogę ucieczki, to w najbliższej przyszłości możemy obserwować znaczący wzrost emisji metanu z mas lodowych. Naukowcy dodają jednak, że wciąż dobrze nie rozumiemy pochodzenia i wpływu na atmosferę metanu pochodzącego z takich właśnie źródeł. Sądzą, że o ile może dojść do znacznych wzrostów emisji metanu spod lodów, to może być to krótkotrwałe zjawisko, gdyż w miarę jak lód będzie zanikał, zanikały będą też warunki, w jakich metan ten powstaje. « powrót do artykułu
  2. Niektóre praktyki stosowane przy sztucznym nawadnianiu pól ryżowych mogą prowadzić do dwukrotnie większej emisji gazów cieplarnianych, niż dotychczas przypuszczano. Mowa tutaj o metodzie, która polega na zalewaniu pól wodą, po czym pozwala im się wyschnąć. Jako, że ryż dostarcza pożywienia dla połowy populacji Homo sapiens, sposób uprawy pól ryżowych ma znaczący wpływ na klimat planety, czytamy w PNAS (Proceedings of the National Academy of Sciences). Specjaliści z niedochodowej organizacji Environmental Defense Fund przyjrzeli się tlenkowi diazotu, silnemu gazowi cieplarnianemu. Okazało się, że gdy kilkukrotnie w ciągu roku pola są zalewane, a później doprowadza się do dużego spadku poziomu wody, dochodzi do niespodziewanie dużej emisji N2O. Co interesujące, do takiego sposobu uprawy rolnicy są zachęcani przed Organizację Narodów Zjednoczonych ds. Wyżywienia i Rolnictwa (FAO). Jest to bowiem sposób zarówno na oszczędzenie wody, jak i na redukcję emisji metanu. Nie wiadomo, jak wielu rolników stosuje tę metodę uprawy. Gdy gleba jest wielokrotnie zalewana i osuszana, powstają idealne warunki do rozwoju bakterii produkujących tlenek diazotu. Z drugiej strony bakterie produkujące metan pojawiają się, gdy gleba jest ciągle zalana, mówi Kritee Kritee, naukowiec pracująca dla EDF. Uczona dodaje, że wiadomym jest, iż z zalanej gleby nie wydostają się duże ilości tlenku diazotu. Problem jednak w tym, że wiele pól ryżowych nie jest ciągle zalanych. Zdaniem Kritee nie doszacowaliśmy negatywnego wpływu uprawy ryżu na klimat. Autorzy nowych badań szacują, że niedoszacowana ilość N2O emitowanego przez światowe uprawy ryżu może odpowiadać emisji z około 200 elektrowni węglowych. W Indiach, gdzie prowadzono badania, emisja z okresowo zalewanych pól ryżowych była 30-45 razy większa, niż z pól, które są stale zalane. Naukowcy szacują, że ogólna rzeczywista emisja w przeliczeniu na hektar może być 3-krotnie wyższa niż najwyższe dotychczasowe szacunki. Gdy uzyskane przez nas wyniki ekstrapolujemy w skali całego świata i dodamy do nich szacunki dotyczące emisji metanu, to łączny wpływ na klimat metanu i tlenku diazotu emitowanych z pól ryżowych może być dwukrotnie większy niż dotychczas szacowano, mówi Kritee. Sytuacja może ulec pogorszeniu, gdyż w związku z coraz mniejszą dostępnością wody, coraz większa liczba rolników przestawia się na uprawę z okresowym zalewaniem i osuszaniem pól. « powrót do artykułu
  3. Gdy wystawione na oddziaływanie słońca polimery rozkładają się w środowisku, dochodzi do uwolnienia gazów cieplarnianych: metanu i etylenu. Naukowcy z Uniwersytetu Hawajskiego w Mānoa analizowali poliwęglany, poliakrylany, polipropylen, poli(tereftalan etylenu), polistyren, a także polietyleny dużej i małej gęstości (HDPE i LDPE). Wykorzystywany w reklamówkach polietylen jest produkowanym w największych ilościach i najczęściej wyrzucanym syntetycznym polimerem na świecie. Trudno się więc dziwić, że to on okazał się najbardziej "produktywnym" emitentem obu gazów cieplarnianych. Wskaźnik emisji gazów z granulatu surowego LDPE wzrósł w czasie 212-dniowego eksperymentu. Znalezione w oceanie drobiny LDPE także emitowały gazy cieplarniane pod wpływem ekspozycji na światło słoneczne. Co więcej, raz wystawione na oddziaływanie promieniowania, uwalniały gazy cieplarniane również w ciemności. Rosnącą w czasie emisję gazów cieplarnianych z granulatu przypisujemy fotodegradacji plastiku oraz powstaniu naznaczonej pęknięciami i zagłębieniami warstwy powierzchniowej. Z czasem defekty te zwiększają powierzchnię dostępną dla dalszego fotochemicznego rozkładu, przez co rośnie także tempo produkcji gazów - wyjaśnia dr Sarah-Jeanne Royer. Produkcję metanu i etylenu może też przyspieszać powstanie mikroplastiku. Prof. David Karl dodaje, że źródło gazów w postaci plastiku nie jest uwzględniane przy ocenie globalnych cykli metanu i etylenu, a może ono mieć znaczący wpływ. Jeśli weźmie się pod uwagę ilość plastiku pływającego w morzach i oceanach oraz ilość polimerów stykających się z warunkami zewnętrznymi, na podstawie uzyskanych wyników po raz kolejny dojdziemy do wniosku, że przede wszystkim musimy ograniczyć produkcję plastików, zwłaszcza tych jednorazowych - podsumowuje Royer.   « powrót do artykułu
  4. NASA ogłosiła, że łazik Curiosity znalazł nowe dowody wskazujące, że na Marsie mogło istnieć życie. Jego potencjalne ślady znaleziono w skałach i marsjańskiej atmosferze. Te nowe dowody to molekuły organiczne w skałach osadowych sprzed trzech miliardów lat oraz sezonowe zmiany poziomu metanu w atmosferze. Molekuły organiczne zawierają węgiel i wodór. W ich skład mogą wchodzić też tlen, azot i inne pierwiastki. Ich obecność zwykle jest związana z istnieniem życia, ale mogą one również powstawać w procesach niebiologicznych i niekoniecznie są dowodami na istnienie życia. Mars mówi nam, żebyśmy nadal szukali dowodów na istnienie życia. Jestem pewien, że nasze kolejne misje przyniosą kolejne niesamowite odkrycia związane z Czerwoną Planetą, mówi Thomas Zurbuchen szef Dyrektoriatu Misji Naukowych NASA. Curiosity nie określił pochodzenia tych molekuł. Jednak niezależnie od tego, czy jest to zapis dawnego życia, dowód na istnienie materii podtrzymującej życie czy też molekuły te istniały bez obecności życia, materia organiczna na Marsie zawiera wiele odpowiedzi dotyczących historii tej planety, dodaje Jen Eigenbrode z Goddard Space Flight Center, która jest główną autorką dwóch artykułów na temat odkrycia opublikowanych w Science. Obecnie powierzchnia Marsa nie nadaje się do życia. Jednak już wcześniej zdobyto dowody, że w przeszłości na Marsie mogła istnieć woda w stanie ciekłym. Teraz w Kraterze Gale, w którym przed miliardami lat istniało jezioro, istniały też wszystkie składniki potrzebne do pojawienia się życia. Powierzchnia Marsa jest wystawiona na działanie promieniowania kosmicznego. Promieniowanie to wraz z różnymi związkami chemicznymi rozbijają materię organiczną. Znalezienie materii organicznej na głębokości pięciu centymetrów pod powierzchnią marsa, która znalazła się tam w czasie, gdy na Marsie mogło istnieć życie, zachęca nas do dalszych poszukiwań. W ramach przyszłych misji będziemy wiercili głębiej, dodaje Eigenbrode. Naukowcy opisują też sezonowe zmiany poziomu metanu w atmosferze Marsa. Curiosity wykrywał takie zmiany przez trzy marsjańskie lata, co odpowiada sześciu ziemskim latom. Metan mógł powstać w wyniku interakcji wody ze skałami, jednak nie można wykluczyć jego organicznego pochodzenia. Przeprowadzona przez Curiosity badania wykazały, że poziom metanu wzrasta podczas gorących letnich miesięcy i spada w czasie zimy. Obecnie ludzkość prowadzi kilka misji marsjańskich. Na orbicie planety znajdują się Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA), Mars Orbiter Mission (Indie), MAVEN (NASA) oraz ExoMars Trace Gas Orbiter (ESA/Roskosmos). Na powierzchni planety pracują zaś łaziki Opportunity (NASA) i Curiosity (NASA). W kierunku Czerwonej Planety leci obecnie misja InSight (NASA). Na rok 2020 przygotowywanych jest aż pięć misji. « powrót do artykułu
×
×
  • Create New...