Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pierwsze splątanie organizmu żywego i fotonu

Recommended Posts

Grupa naukowców z Uniwersytetu w Oksfordzie donosi o udanym splątaniu bakterii z fotonami. W październikowym numerze Journal of Physics ukazał się artykuł zespołu pracującego pod kierunkiem Chiary Marletto, który przeanalizował eksperyment przeprowadzony w 2016 roku przez Davida Colesa i jego kolegów z University of Sheffield.

Podczas wspomnianego eksperymentu Coles wraz z zespołem umieścili kilkaset chlorobakterii pomiędzy dwoma lustrami i stopniowo zmniejszali odległość pomiędzy nimi tak, aż dzieliło je zaledwie kilkaset nanometrów. Odbijając białe światło pomiędzy lustrami naukowcy chcieli spowodować, by fotosyntetyczne molekuły w bakteriach weszły w interakcje z dziurą, innymi słowy, bakterie miały ciągle absorbować, emitować i ponownie absorbować odbijające się fotony. Eksperyment okazał się sukcesem. Sześć bakterii zostało w ten sposób splątanych z dziurą.

Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.

Nasze modele dowodzą, że zanotowano sygnaturę splątania pomiędzy światłem a bakterią, mówi pani Marletto. Po raz pierwszy udało się dokonać splątania kwantowego w żywym organizmie.

Istnieje jednak wiele zastrzeżeń, mogących podważać wnioski grupy Marletto. Po pierwsze i najważniejsze, dowód na splątanie zależy od tego, w jaki sposób zinterpretujemy interakcję światła z bakterią. Marletto i jej grupa zauważają, że zjawisko to można opisać też na gruncie klasycznego modelu, bez potrzeby odwoływania się do efektów kwantowych. Jednak, jak zauważają, nie można tego opisać modelem „półklasycznym”, w którym do bakterii stosujemy zasady fizyki newtonowskiej, a do fotonu fizykę kwantową To zaś wskazuje, że mieliśmy do czynienia z efektami kwantowymi dotyczącymi zarówno bakterii jak i fotonu. To trochę dowód nie wprost, ale sądzę, że wynika to z faktu, iż oni próbowali bardzo rygorystycznie podejść do tematu i nie wysuwali twierdzeń na wyrost, mówi James Wootton z IBM Zurich Research Laboratory, który nie był zaangażowany w badania.

Z kolei Simon Gröblacher z Uniwersytetu Technologicznego w Delft zwraca uwagę na kolejne zastrzeżenie. Otóż energię bakterii i fotonu zmierzono wspólnie, nie osobno. To pewne ograniczenie, ale wydaje się, że miały tam miejsce zjawiska kwantowe. Zwykle jednak gdy chcemy dowieść splątania, musimy osobno zbadać oba systemy.

Wiele zespołów naukowych próbuje dokonać splątania z udziałem organizmów żywych. Sam Gröblacher zaprojektował eksperyment, w którym chce umieścić niesporczaki w superpozycji. Chodzi o to, by zrozumieć nature rzeczy i sprawdzić czy efekty kwantowe są wykorzystywane przez życie. W końcu u swoich podstaw wszystko jest kwantem, wyjaśnia współpracownik Marletto, Tristan Farrow.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Cytat

Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.

Słabo to widzę. Czy to że foton przechodzi albo nie przez zwierciadło półprzepuszczalne oznacza że splątano foton i zwierciadło? Samo oddziaływanie fotonu i bakterii niczym specjalnym nie jest. Człowiek też oddziałuje z fotonami :) A zjawiska kwantowe zawsze mogą zachodzić pomiędzy fotonem a dowolnym atomem tworzącym bakterię.

 

Edited by thikim

Share this post


Link to post
Share on other sites
19 godzin temu, thikim napisał:

Słabo to widzę. Czy to że foton przechodzi albo nie przez zwierciadło półprzepuszczalne oznacza że splątano foton i zwierciadło?

Ja również jestem dość zawiedziony. Splątanie to stan nieustalony (chyba), zatem nie możemy wiedzieć czy to foton czy bakteria. :) Wysyłamy taki splątany obiekt do sąsiedniego laboratorium, tam go odpakowują, czekają na dekoherencję i bum, bakteria! Znaczy, foton został u nadawcy :) To jest splątanie jakie lubimy, akceptujemy i jakiego oczekujemy.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielu osobom przebywającym na oddziałach intensywnej opieki medycznej podaje się probiotyki. Okazuje się jednak, że u niewielkiego odsetka pacjentów mogą one powodować bakteremię. Obecne w probiotykach bakterie mogą bowiem dostawać się do krwi pacjentów.
      O zauważeniu takiego zjawiska informuje na łamach Nature grupa naukowców z Wydziału Biologii Izraelskiego Instytutu Technologicznego Technion w Hajfie oraz z Boston's Children Hospital, Harvard Medical School i Walter Reed Army Institute of Research w USA.
      Wszystko zaczęło się od spostrzeżenia, jakiego dokonano w Boston Children's Hospital. Otóż w latach 2009–2014 na tamtejszy OIOM przyjęto 22 174 pacjentów. Wśród nich były 522 osoby, które otrzymywały probiotyki zawierające szczep Lactobacillus rhamnosus GG (LGG). Bakteremia pojawiła się u 6 (1,1%) z tych pacjentów. Tymczasem w grupie 21 652 pacjentów, którzy nie otrzymywali probiotyków z LGG bakteremie zaobserwowano u 2 osób (0,009%). Innymi słowy, w grupie przyjmującej probiotyki ryzyko wystąpienia bakteremii było ponad 100-krotnie większe. Naukowcy postanowili bliżej się temu przyjrzeć. Chcieliśmy sprawdzić, czy możemy zidentyfikować przyczyny wystąpienia bakteremii i czy uda się nam opracować rekomendacje dotyczące podawania probiotyków pacjentom OIOM-u, mówi jedna z głównych autorek badań, doktor Kelly Flett.
      Najpierw szczegółowo zbadano same bakterie z krwi chorych i stwierdzono, że we wszystkich 6 przypadkach osób, które przyjmowały probiotyki we krwi występują Lactobacillus rhamnosus. U obu osób nieprzyjmujących probiotyków bakteremia była wywołana przez inne gatunki Lactobacillus. Warto tutaj zauważyć, że bakteremia spowodowana przez Lactobacillus rhamnosus występuje w całej populacji z częstotliwością 0,00007%, zatem zdarza się kilkanaście tysięcy razy rzadziej, niż wspomniany 1,1% pacjentów OIOM-u przyjmujących probiotyki.
      By stwierdzić, czy to probiotyki wywołały bakteremie, wykonano szczegółowe analizy kodu genetycznego bakterii wyizolowanych z krwi pacjentów, a wyniki porównano z genomem bakterii obecnych w probiotykach LGG. Okazało się, że genomy są niemal identyczne. We wszystkich próbkach łącznie wykryto jedynie 23 polimorfizmy pojedynczego nukleotydu (SNP), a odległość pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków i z krwi pacjentów była mniejsza niż pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków a klonami LGG przechowywanymi w banku genetycznym. Co więcej, nie stwierdzono żadnej mutacji, która jednoznacznie pozwoliłaby odróżnić bakterie z probiotyków od bakterii z krwi.
      Autorzy badań podkreślają, że u wspomnianych 6 pacjentów, u których rozwinęła się bakteremia, nie występowały typowe czynniki ryzyka bakteremii Lactobacillus. Co więcej, gdy osoby te porównano z 16 innymi pacjentami OIOM-u, którzy też przyjmowali probiotyki, ale u których bakteremia nie wystąpiła, nie stwierdzono żadnych istotnych różnic takich jak użycie sprzętu medycznego w czasie pobytu w szpitalu, zabiegi chirurgiczne, występowanie biegunki, przyjmowanie antybiotyków i inne. To zaś wskazuje, że prawdopodobnie trudno będzie zidentyfikować tych pacjentów, którzy są narażeni na rozwój bakteremii.
      Naukowcy nie wiedzą, w jaki sposób doszło do zakażenia krwi. Wszyscy pacjenci mieli założone wkłucie centralne, które jest jedną z możliwych dróg zakażenia. Inną możliwością jest przeniknięcie bakterii przez ścianę pęcherza.
      Badania wykazały istotne statystycznie zwiększone ryzyko rozwoju bakteremii u pacjentów OIOM-u przyjmujących probiotyki z LGG. Stwierdzono także, że już po przeniknięciu do krwioobiegu pacjenta bakterie ewoluują. Nie można wykluczyć, że nabywają wówczas oporności na antybiotyki, chociaż nie ma też pewności, czy cech tych nie wykazywały jeszcze przed podaniem probiotyków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Antybiotykooporność to jeden z największych problemów, z którymi przychodzi właśnie mierzyć się ludzkości. Już w tej chwili na terenie Unii Europejskiej każdego roku z powodu antybiotykooporności umiera 25 000 osób. Jeśli nie poradzimy sobie z tym problemem, to w roku 2050 na całym świecie będzie umierało 10 milionów osób rocznie z powodu oporności bakterii na stosowane antybiotyki.
      Tym bardziej należy cieszyć się, że powstał nowy środek chemiczny, który skutecznie identyfikuje i zabija antybiotykooporne superbakterie Gram-ujemne. Jest on dziełem doktorantki Kirsty Smitten, a prace nad nim prowadzą naukowcy z University of Sheffield i Rutheford Appleton Laboratory.
      Bakterie Gram-ujemne, a należy do nich np. E. coli, są odpowiedzialne za wiele niebezpiecznych infekcji, w tym zapalenie płuc, infekcje układu moczowego czy krwionośnego. Bardzo trudno się je zwalcza, gdyż środki chemiczne mają problem z przeniknięciem ściany komórkowej bakterii. Od 50 lat nie pojawiła się żadna nowa metoda zwalczania bakterii Gram-ujemnych, a ostatni lek, który potencjalnie mógłby je zwalczać, wszedł w fazę testów klinicznych w 2010 roku.
      Nowy związek chemiczny ma kilka istotnych cech. Wykazuje luminescencję, co oznacza, że można śledzić sposób, w jaki działa na bakterie. To zaś umożliwia prace nad nowymi terapiami.
      Dotychczasowe badania wskazują, że wspomniany związek działa na kilka różnych sposobów, co powoduje, że bakteriom trudno będzie wyrobić oporność. Na razie testowany był na mikroorganizmach opornych na jeden rodzaj antybiotyków. W najbliższym czasie rozpoczną się testy na bakteriach wielolekoopornych.
      Niedawno Światowa Organizacja Zdrowia opublikowała raport, w którym wymieniała kilkanaście Gram-ujemnych bakterii jako jedne z największych zagrożeń dla ludzi i stwierdziła, że znalezienie środków je zwalczających jest priorytetem, gdyż bakterie te powodują choroby o wysokiej śmiertelności, bardzo szybko ewoluuje u nich antybiotykooporność, a zakażeniami często dochodzi w szpitalach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Eksperyment przeprowadzony na Heriot-Watt University w Edynburgu dowodzi, że obiektywna rzeczywistość nie istnieje. Zespół naukowy prowadzony przez Massimiliano Poiettiego jako pierwszy w historii przeprowadził eksperyment zwany Przyjacielem Wignera.
      Ten eksperyment myślowy został zaproponowany w 1961 roku przez Eugene'a Wignera. Naukowcy przez kilkadziesiąt lat nie byli w stanie go przeprowadzić, jednak w ubiegłym roku uczeni z Edynburga stwierdzili, że ostatnie postępy w technologiach kwantowych są tak duże, że można pokusić się o próbę eksperymentalnego zweryfikowania Przyjaciela Wignera.
      Eksperyment Wignera jest bardzo prosty w założeniach. Rozpoczynamy od pojedynczego fotonu, który, po dokonaniu pomiaru, będzie miał polaryzację poziomą lub pionową. Jednak przed pomiarem, zgodnie z zasadami mechaniki kwantowej, foton istnieje w superpozycji, czyli ma jednocześnie oba rodzaje polaryzacji. Wigner zaproponował istnienie przyjaciela, który w laboratorium dokonuje pomiaru fotonu i zachowuje informację o jego polaryzacji. Wigner obserwuje wszystko z daleka. Jako, że nie ma informacji o wynikach pomiaru, musi założyć, że wynik pomiaru to superpozycja wszystkich możliwych wyników. Z punktu widzenia Wignera, superpozycja istnieje. A jeśli tak, to pomiar nie miał miejsca. Jednak dla jego przyjaciela foton ma jedną konkretną polaryzację. Może on nawet poinformować Wignera, że dokonał pomiaru. O ile jednak nie poinformuje o jego wyniku, dla Wignera foton będzie w superpozycji.
      Mamy więc tutaj do czynienia z dwiema różnymi rzeczywistościami. To zaś poddaje w wątpliwość obiektywizm faktów z punktu widzenia różnych obserwatorów, mówi Proietti.
      W ubiegłym roku Caslav Brukner z Uniwersytetu w Wiedniu wpadł na pomysł, w jaki sposób można by przeprowadzić eksperyment Przyjaciela Wignera, używając wtym celu wielu splątanych cząstek. Przełomowy eksperyment został wykonany przez Proiettiego i jego zespół. Podczas wysoce zaawansowanego eksperymentu, w którym wykorzystaliśmy 6 fotonów, zrealizowaliśmy scenariusz Przyjaciela Wignera, mówi Proietti.
      Naukowcy wykorzystali 6 splątanych fotonów do stworzenia dwóch odmiennych rzeczywistości. Jedna reprezentowała Wingera, druga jego przyjaciela. Przyjaciel mierzy polaryzację fotonu i zapisuje wynik. Później Wigner dokonuje pomiaru, by stwierdzić, czy wcześniejszy pomiar i foton są w superpozycji.
      Eksperyment nie dał jednoznacznych wyników. Okazało się, że obie rzeczywistości, ta przyjaciela i ta Wignera mogą istnieć jednocześnie, mimo że dają sprzeczne wyniki.
      Przeprowadzony w Edynburgu eksperyment każe zadać pytania o naturę rzeczywistości. Pomysł, że obserwatorzy mogą pogodzić uzyskane przez siebie wyniki opiera się na kilku założeniach. Przede wszystkim na tym, że rzeczywistość obiektywna istnieje i obserwatorzy mogą się co do niej zgodzić. Jednak istnieją też inne założenia. Na przykład takiego, że obserwatorzy mogą dokonywać dowolnych obserwacji, czy też, że wybory jednego obserwatora nie wpływają na wybory drugiego. Jeśli istnieje obiektywna rzeczywistość, to wszystkie te założenia można utrzymać.
      Jednak eksperyment Proiettiego poddaje w wątpliwość istnienie obiektywnej rzeczywistości. Oznacza to, że przynajmniej jedno z założeń – że istnieje rzeczywistość, co do której możemy się umówić, że mamy wolny wybór lub też, że wybory jednego obserwatora nie wpływają na wybory drugiego – jest nieprawdziwe.
      Oczywiście możemy też założyć, że w samym eksperymencie istnieje jakaś dziura, coś czego naukowcy nie zauważyli, a co wpływa na jego wynik. Fizycy od lat próbują odnaleźć i zamknąć takie dziury w podobnych eksperymentach, ale przyznają, że być może nigdy nie będzie możliwe, by je wszystkie usunąć.
      Tak czy inaczej badania Proiettiego mają duże znaczenie dla nauki. Metoda naukowa bazuje na faktach ustalanych przez powtarzalne eksperymenty, których wyniki zostały szeroko zaakceptowane, niezależnie od obserwatora, mówi Proietti. Jednak jego własny eksperyment wykazał, że różni obserwatorzy mogą doświadczać różnej rzeczywistości.
      Kolejnym logicznym etapem badań wydaje się projektowanie takich eksperymentów, które będą dawały coraz bardziej dziwne i coraz bardziej rozłączne wyniki dla różnych obserwatorów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ludzkich jelitach znaleziono największe ze znanych bakteriofagów, które okresowo dziesiątkują bakterie w naszym przewodzie pokarmowym. Jak donoszą naukowcy z Uniwersytetu Kalifornijskiego w Berkeley, te megafagi są 10-krotnie większe od przeciętnych bakteriofagów i 2-krotnie większe od największych znanych dotychczas fagów. Co interesujące, znaleziono je wyłącznie w jelitach osób, które stosują dietę odmienną od diety ludzi z Zachodu, jedzą dużo błonnika i mało tłuszczu.
      Megafagi znaleziono też w jelitach pawianów i świń, co pokazuje, że fagi, które mogą też zawierać geny mające wpływ na ludzkie zdrowie, mogą przemieszczać się pomiędzy ludźmi a zwierzętami. Niewykluczone zatem, że mogą też przenosić choroby.
      Wiemy, że fagi mogą przenosić geny powodujące choroby oraz geny antybiotykooporności. Przemieszczanie się megafagów i przemieszczenie się bakterii będących ich gospodarzami stwarza możliwość przenoszenia chorób pomiędzy ludźmi a zwierzętami. A megafagi zwiększają to ryzyko, mówi profesor Jill Banfield.
      Warto tutaj też wspomnieć, że większość biologów nie uważa wirusów za organizmy żywe. Odkrycie megafagów, które są  większe niż bakterie zaciera różnice pomiędzy tym, co ożywione a co nieożywione.
      Profesor Banfiled jest pionierem na polu sekwencjonowania metagenomicznego. To metoda pozwalająca na jednoczesne sekwencjonowanie wszystkich genów wszystkich organizmów występujących w danej próbce. Po sekwencjonowaniu odtwarza się genom każdego z organizmów, często okrywając przy tym nieznane mikroorganizmy. Pani Banfield i jej zespół prowadzili już sekwencjonowanie próbek wód kopalnianych, gejzerów, ludzkiego przewodu pokarmowego, głęboko położonych warstw skalnych, odkrywając przy tym olbrzymią liczbę nowych mikroorganizmów.
      Banfield odkryła megafagi analizując próbki z jelit mieszkańców Bangladeszu. Zawierający materiał genetyczny kapsyd megafagów ma średnicę aż 200-300 nanometrów. Dzięki technice CRISPR ujawniono też, że fragmenty kodu genetycznego megafagów znajdują się tylko u bakterii z rodzaju Prevotella, co sugeruje, że megafagi głównie na nich żerują. Prevotella rzadziej występuje u ludzi spożywających dietę zachodnią, bogatą w mięso, cukier i tłuszcze. Prevotella powoduje infekcje górnych dróg oddechowych oraz choroby przyzębia. Odkrycie megafagów, które na niej żerują, może przyczynić się do opracowania nowych metod leczenia.
      Pierwszego odkrycia megafagów dokonano u ludzi żyjących w Bangladeszu w regionie administracyjnym Laksham Upazila. Dlatego nazwano je fagami Lak. Następnych odkryć dokonano u przedstawicieli zbieracko-łowieckiego plemienia Hadza w Tanzanii, dwóch oddzielnych grup społecznych pawianów z Kenii oraz u świń z duńskich farm. Pomiędzy fagami Lak odkrytymi u świń i tymi u ludzi występuje bliższe pokrewieństwo, niż między fagami Lak znalezionymi u pawianów i ludzi. Jest więc dość prawdopodobne, że fagi te przemieszczają się pomiędzy różnymi gatunkami. Sądzimy, że fagi Lak dopiero niedawno dostały się do organizmów pawianów, gdyż są pawiany niemal nie wyrobiły sobie na nie oporności i są one wśród nich bardzo rozpowszechnione, mówi profesor Banfield.
      Fagi mogą przenosić geny kodujące wiele toksyn bakteryjnych, powodując, że u osób zarażonych występują poważniejsze objawy różnych chorób. Grupa Banfield chce zbadać, w jaki sposób fagi i ich bakteryjne ofiary zmieniają się w czasie i jak wpływa na nie dieta. U czterech osób, u których odkryto megafagi stwierdzono, że zarówno ilość fagów jak i bakterii Prevotella zmienia się w czasie. Wygląda na to, że dochodzi do okresowych wzrostów liczby fagów, co prowadzi co spadku populacji Prevotella, to z kolei powoduje spadek populacji fagów, co umożliwia odrodzenie się populacji bakterii. I cykl się powtarza.
      Duże genomy megafagów to obiecujące pole do badań. Te genomy są pełne protein, których funkcji nie znamy. Być może biorą one udział w procesach, o których nie mamy pojęcia. Możemy odkryć tam wiele nowych rzeczy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sensacyjne wyniki badań mogą sugerować, że za rozwój choroby Alzheimera odpowiada... niedostateczna higiena jamy ustnej. Wszystko wskazuje na to, że jest ona w jakiś sposób powiązana z tym schorzeniem.
      Przyczyny choroby Alzheimera pozostają nieznane. Rozpowszechnioną teorię, mówiącą, że odpowiada za nią gromadzenie się blaszek amyloidowych w mózgu, osłabiają ostatnie wyniki badań, w czasie których blaszki amyloidowe znaleziono też w mózgach zdrowych osób.
      Wiadomo, że niedostateczna higiena jamy ustnej jest powiązana z chorobą Alzheimera. Nie jest jednak jasne, czy przyczynia się ona do powstawania choroby, czy też jest jej wynikiem, gdyż pacjenci z demencją zapominają o myciu zębów.
      Najnowsze wyniki badań dowodzą, że bakteria powodująca choroby przyzębia jest obecna nie tylko w ustach, ale i w mózgach osób z alzheimerem. Co więcej, badania na myszach wykazały, że bakteria wywołuje w mózgu zmiany typowe dla alzheimera.
      To kolejne już odkrycie sugerujące, że do rozwoju tej choroby neurodegeneracyjnej przyczyniają się mikroorganizmy. Jednak nawet naukowcy, którzy zgadzają się z takim podejściem, nie są przekonani, że Porphyromonas gingivalis, bakteria, która była przedmiotem najnowszych badań, wywołuje alzheimera. Całkowicie zgadzam się z tym, że ten mikroorganizm może brać w tym udział. Ale znacznie mniej przekonuje mnie stwierdzenie, że to on odpowiada za chorobę Alzheimera, mówi neurobiolog Robert Moir z Uniwersytetu Harvarda, którego badania wskazują, że gromadzenie się w mózgu β-amyloidu, z którego formują się blaszki, to forma obrony przed mikroorganizmami.
      Za najnowszymi badaniami, których wyniki opublikowano w Science Advances, stoi firma biotechnologiczna Cortexyme z San Francisco. Jej współzałożycielem jest Stephen Dominy. To psychiatra, który w latach 90. ubiegłego roku leczył ludzi z HIV. Niektórzy z jego pacjentów cierpieli na demencję, która cofnęła się po podaniu im leków antyretrowirusowych. Wtedy to Dominy zaczął zastanawiać się, czy choroba Alzheimera, której najbardziej znanym objawem jest demencja, nie jest chorobą zakaźną. Uczony zaczął poszukiwać P. gingivalis z tkance mózgowej zmarłych, którzy cierpieli na alzheimera. Gdy znalazł jej ślady założył firmę, która zajęła się dalszymi badaniami.
      Cortexyme we współpracy z laboratoriami w Europie, USA, Nowej Zelandii i Australii potwierdziła, że wspomniana bakteria nie tylko znajduje się w mózgach zmarłych, którzy cierpieli na chorobę Alzheimera, ale jej DNA jest obecne też w płynie mózgowo-rdzeniowym żywych pacjentów. Co więcej, w ponad 90% zbadanych tkanek mózgowych znaleziono gingipainy, toksyczne enzymy wytwarzane przez P. gingivalis. Służą one bakterii do zmiany odpowiedzi immunologicznej gospodarza na własną korzyść oraz do pozyskiwania składników odżywczych. Uczeni zauważyli, że im więcej gingipain w mózgu, tym więcej też powiązanych z chorobą alzheimera protein tau i ubikwityny.
      Uczeni, chcąc sprawdzić, czy bakteria może powodować rozwój choroby, codziennie przez 6 tygodni nakładali na dziąsła myszy P. gingivalis. Później w mózgach zwierząt znaleźli zarówno bakterię, jak i umierające neurony oraz podwyższony poziom β-amyloidu. Podczas eksperymentów w laboratorium okazało się, że gingipainy niszczą białka tau. Wiadomo zaś, że zwyrodnienia tego białka są skorelowane z nasileniem objawów choroby Alzheimera.
      Gdy myszom laboratoryjnym podawano lek, który wiąże gingipainy, doprowadziło to do lepszego oczyszczenia mózgu z P. gingivalis niż podawanie popularnych antybiotyków, zmniejszyło produkcję β-amyloidu oraz tempo neurodegeneracji. Wzięcie na cel gingipain prowadzi prawdopodobnie do zagłodzenia bakterii, mówi Dominy. Wstępne badania na ochotnikach sugerują, że lek jest prawdopodobne bezpieczny i prowadzi do poprawy funkcji poznawczych,. Jeszcze w bieżącym roku mają ruszyć testy na większą skalę.
      Neurolog James Noble z Columbia University, który badał związek chorób przyzębia z alzheimerem mówi, że co prawda hipoteza tego typu jest dziwna, ale wydaje się mieć pewne podstawy. Noble dodaje, że eksperymenty przeprowadzone przez Cortexyme są największymi z dotychczasowych badań nad obecnością P. gingivalis w mózgach osób cierpiących na chorobę Alzheimera i że zostały solidnie przeprowadzone.
      Niewykluczone, że P. gingivalis jest jednym z wielu mikroorganizmów, które w jakiś sposób wpływają na rozwój alzheimera. Jeśli jednak się okaże, że to właśnie ten mikroorganizm odpowiada za pojawienie się choroby, nie oznacza to jeszcze, że każdy, kto cierpi na choroby przyzębia, zachoruje też na alzhemiera. Jednak tak czy inaczej wygląda na to, że regularna i prawidłowa higiena jamy ustnej zmniejsza ryzyko.

      « powrót do artykułu
×
×
  • Create New...