Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pierwsze splątanie organizmu żywego i fotonu

Recommended Posts

Grupa naukowców z Uniwersytetu w Oksfordzie donosi o udanym splątaniu bakterii z fotonami. W październikowym numerze Journal of Physics ukazał się artykuł zespołu pracującego pod kierunkiem Chiary Marletto, który przeanalizował eksperyment przeprowadzony w 2016 roku przez Davida Colesa i jego kolegów z University of Sheffield.

Podczas wspomnianego eksperymentu Coles wraz z zespołem umieścili kilkaset chlorobakterii pomiędzy dwoma lustrami i stopniowo zmniejszali odległość pomiędzy nimi tak, aż dzieliło je zaledwie kilkaset nanometrów. Odbijając białe światło pomiędzy lustrami naukowcy chcieli spowodować, by fotosyntetyczne molekuły w bakteriach weszły w interakcje z dziurą, innymi słowy, bakterie miały ciągle absorbować, emitować i ponownie absorbować odbijające się fotony. Eksperyment okazał się sukcesem. Sześć bakterii zostało w ten sposób splątanych z dziurą.

Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.

Nasze modele dowodzą, że zanotowano sygnaturę splątania pomiędzy światłem a bakterią, mówi pani Marletto. Po raz pierwszy udało się dokonać splątania kwantowego w żywym organizmie.

Istnieje jednak wiele zastrzeżeń, mogących podważać wnioski grupy Marletto. Po pierwsze i najważniejsze, dowód na splątanie zależy od tego, w jaki sposób zinterpretujemy interakcję światła z bakterią. Marletto i jej grupa zauważają, że zjawisko to można opisać też na gruncie klasycznego modelu, bez potrzeby odwoływania się do efektów kwantowych. Jednak, jak zauważają, nie można tego opisać modelem „półklasycznym”, w którym do bakterii stosujemy zasady fizyki newtonowskiej, a do fotonu fizykę kwantową To zaś wskazuje, że mieliśmy do czynienia z efektami kwantowymi dotyczącymi zarówno bakterii jak i fotonu. To trochę dowód nie wprost, ale sądzę, że wynika to z faktu, iż oni próbowali bardzo rygorystycznie podejść do tematu i nie wysuwali twierdzeń na wyrost, mówi James Wootton z IBM Zurich Research Laboratory, który nie był zaangażowany w badania.

Z kolei Simon Gröblacher z Uniwersytetu Technologicznego w Delft zwraca uwagę na kolejne zastrzeżenie. Otóż energię bakterii i fotonu zmierzono wspólnie, nie osobno. To pewne ograniczenie, ale wydaje się, że miały tam miejsce zjawiska kwantowe. Zwykle jednak gdy chcemy dowieść splątania, musimy osobno zbadać oba systemy.

Wiele zespołów naukowych próbuje dokonać splątania z udziałem organizmów żywych. Sam Gröblacher zaprojektował eksperyment, w którym chce umieścić niesporczaki w superpozycji. Chodzi o to, by zrozumieć nature rzeczy i sprawdzić czy efekty kwantowe są wykorzystywane przez życie. W końcu u swoich podstaw wszystko jest kwantem, wyjaśnia współpracownik Marletto, Tristan Farrow.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Cytat

Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.

Słabo to widzę. Czy to że foton przechodzi albo nie przez zwierciadło półprzepuszczalne oznacza że splątano foton i zwierciadło? Samo oddziaływanie fotonu i bakterii niczym specjalnym nie jest. Człowiek też oddziałuje z fotonami :) A zjawiska kwantowe zawsze mogą zachodzić pomiędzy fotonem a dowolnym atomem tworzącym bakterię.

 

Edited by thikim

Share this post


Link to post
Share on other sites
19 godzin temu, thikim napisał:

Słabo to widzę. Czy to że foton przechodzi albo nie przez zwierciadło półprzepuszczalne oznacza że splątano foton i zwierciadło?

Ja również jestem dość zawiedziony. Splątanie to stan nieustalony (chyba), zatem nie możemy wiedzieć czy to foton czy bakteria. :) Wysyłamy taki splątany obiekt do sąsiedniego laboratorium, tam go odpakowują, czekają na dekoherencję i bum, bakteria! Znaczy, foton został u nadawcy :) To jest splątanie jakie lubimy, akceptujemy i jakiego oczekujemy.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Bakteria Stenotrophomonas maltophilia naturalnie występuje w ekosystemie w otoczeniu człowieka. Do niedawna była uważana za nie sprawiającą większych problemów. Teraz okazuje się, że jest to coraz bardziej rozpowszechniony wieloantybiotykooporny patogen powodujący ciężkie infekcje układu oddechowego. S. maltophilia stała się, obok gronkowca złocistego czy E. coli, jednym z najgroźniejszych patogenów powodujących zakażenia szpitalne.
      Bakteria ta jest szczególnie niebezpieczna dla pacjentów z osłabionym układem odpornościowym lub leczonym z powodu stanu zapalnego układu oddechowego. Może ona zaatakować każdy organ, jednak najczęściej dochodzi do infekcji układu oddechowego, bakteremii oraz infekcji wywołanych przez użycie cewnika.
      Jako, że to stosunkowo nowe, bardzo poważne i coraz bardziej rozpowszechnione zagrożenie, konieczne jest lepsze zrozumie wirulencji tego patogenu oraz jego lokalnej i globalnej transmisji.
      Międzynarodowa grupa naukowa pracująca pod nadzorem niemieckiego Centrum Badawczego w Borstel (Forschungszentrum Borstel – Leibniz Lungenzentrum), przeprowadziła pierwsze badania światowego drzewa filogenetycznego S. maltophilia. Naukowcy z ośmiu krajów odkryli, że w 22 krajach istnieją 23 linie S. maltophilia o różnym stopniu rozpowszechnienia, z których większość zawiera szczepy o każdym możliwym stopniu wirulencji. Jedna z tych linii jest obecna na całym świecie i zawiera największą liczbą szczepów infekujących ludzi. Chodzi tutaj o linię Sm6. Stwierdzono w niej istnienie kluczowych genów zwiększających wirulencję i odporność na działanie antybiotyków. To sugeruje, że specyficzna konfiguracja genetyczna może ułatwiać rozpowszechnianie się różnych podtypów S. maltophilia w środowisku szpitalnym, mówi główny autor badań, Matthias Gröschel.
      Analiza sposobu przenoszenia się bakterii ujawniła, że w szpitalach na przestrzeni zaledwie dni i tygodni mogą rozpowszechniać się blisko spokrewnione szczepy.
      Ze szczegółami badań można zapoznać się na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wydaje się, że spożywanie zbyt dużych ilości soli negatywnie wpływa na możliwość obrony organizmu przed bakteriami. Takie wnioski płyną z badań przeprowadzonych na myszach i 10 ochotnikach. Autorzy badań, Christian Kurts i jego zespół ze Szpitala Uniwersyteckiego w Bonn, wykazali, że myszy, w których diecie znajdowała się wysoka zawartość soli, gorzej radziły sobie z infekcją nerek spowodowaną przez E. coli oraz ogólnoustrojową infekcją Listeria monocytogenes. To bardzo zjadliwy patogen, wywołujący niebezpieczne zatrucia pokarmowe.
      Po badaniach na myszach rozpoczęto badania na 10 zdrowych ochotnikach w wieku 20–50 lat. Najpierw sprawdzono, jak w walce z bakteriami radzą sobie ich neutrofile. Następnie badani przez tydzień spożywali dodatkowo 6 gramów soli dziennie. Po tygodniu porównano działanie ich neutrofili. Okazało się, że w każdym przypadku radziły sobie one gorzej niż przed badaniem.
      Naukowcy nie sprawdzali, jak sól wpływa na zdolność organizmu do obrony przed wirusami.
      Światowa Organizacja Zdrowia (WHO) zaleca, by dzienna dawka spożywanej soli nie przekraczała 5 gramów dziennie. Tymczasem przeciętny Polak każdego dnia spożywa średnio 10 gramów soli.
      Naukowcy sądzą, że sól na dwa sposoby upośledza zdolność układu odpornościowego do walki z bakteriami. Po pierwsze, gdy spożywamy za dużo soli uwalniane są hormony, które pomagają ją wydalić. Wśród tych hormonów znajdują się glukokortykoidy, o których wiadomo, że tłumią układ odpornościowy. Ponadto niemieccy badacze zauważyli, że gdy mamy w organizmie dużo soli, w naszych nerkach gromadzi się mocznik, a ten zaburza pracę neutrofilów.
      Wyniki badań zostały opublikowane na łamach Science Translational Medicine.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wraz z pojawieniem się rolnictwa i hodowli, pojawiły się też bakterie wywołujące u ludzi nowe nieznane wcześniej choroby. Do takich wniosków doszedł międzynarodowy zespół naukowy, który badał genomy Salmonella enterica uzyskane ze szkieletów sprzed tysięcy lat. Uczeni przedstawili pierwsze dowody DNA na wsparcie hipotezy mówiącej, że przejście na rolnictwo wiązało się z pojawieniem się nowych patogenów, które zarażają nas do dzisiaj.
      Felix M. Key, Alexander Herbig i Johannes Krause z Instytutu Nauki o Historii Człowieka im. Maxa Plancka stali na czele zespołu, który badał szkielety z zachodu Eurazji i zrekonstruował dzięki temu osiem genomów Salmonella enterica.
      Większość chorób nie pozostawia widocznych zmian w szkielecie, więc naukowcy chcący zbadać,jakie patogeny dręczyły naszych przodków, muszą odwoływać się do poszukiwania w ludzkich szczątkach śladów genomu bakterii i czy wirusów.
      Dzięki opracowanej przez nas technice mogliśmy przeanalizować tysiące próbek zębów pod kątem występowania DNA rodzaju Salmonella, mówi Herbig. Naukowcy przeanalizowali 2739 próbek. Na ich podstawie zrekonstruowali osiem genomów rodzaju Salmonella, w tym i taki pochodzący sprzed 6500 lat. To najstarszy zrekonstruowany dotychczas genom bakteryjny. A obecność S. enterica w zębach świadczy o tym, że ludzie ci w chwili śmierci cierpieli na choroby układowe.
      Badane szczątki należały do ludzi zamieszkujących tereny od współczesnej Rosji po Szwajcarię, którzy reprezentowali różne grupy kulturowe, od łowców zbieraczy, poprzez pasterzy-nomadów po wczesnych rolników. Tak szerokie spektrum czasowe, geograficzne i kulturowe pozwoliło nam na wykorzystanie po raz pierwszy genetyki molekularnej do powiązania ewolucji patogenów z pojawieniem się nowego stylu życia człowieka, mówi Herbig.
      Wraz z pojawieniem się rolnictwa i hodowli zwierząt ludzie zaczęli prowadzić osiadły tryb życia. Mieli większy kontakt ze zwierzętami oraz z odchodami zarówno zwierząt jak i innych ludzi. Od dawna więc istniała hipoteza mówiąca, że wszystkie te czynniki mogły doprowadzić do bardziej stałego i nawracającego kontaktu z patogenami oraz pojawienia się nowych chorób. Brakowało na to jednak bezpośrednich molekularnych dowodów.
      Prehistoryczna metagenomika daje nam niezwykły wgląd w przeszłość ludzkich chorób. Mamy obecnie dane molekularne, które pozwolą nam zrozumieć pojawienie się i rozprzestrzenianie patogenów przed tysiącami lat, stwierdza Felix M. Key z Instytutu Maxa Plancka i Massachusetts Institute of Technology.
      Badania wykazały, że wszystkie 8 genomów rodzaju Salmonella pozyskane od pasterzy i rolników to przodkowie szczepu, który wywołuje obecnie dur rzekomy. Prawdopodobnie jednak te prehistoryczne bakterie nie były dobrze zaadaptowane do ludzi i atakowały również zwierzęta. To zaś sugeruje, że pojawiły się one właśnie w wyniku zmiany trybu życia ze zbieracko-łowieckiego na pasterski i rolniczy.
      Już wcześniej pojawiły się sugestie, że ten szczep Salmonelli przeszedł ze świń na ludzi przed około 4000 lat. Jednak obecne odkrycie, że zaraża on ludzi od ponad 5000 lat sugeruje, że to świnie zaraziły się od nas. Autorzy najnowszych badań proponują jednak inną hipotezę. Uważają oni, że specyficzne dla ludzi i dla świń szczepy Salmonelli pochodzące od wspólnego przodka, zaczęły razem ewoluować gdy ludzie udomowili świnie.
      Zaczynamy rozumieć genetyczne podstawy adaptacji Salmonelli do gospodarza i możemy teraz przełożyć tę wiedzę na mechanizmy dotyczące pojawiania się chorób u ludzi i zwierząt, dodaje Johannes Krause.
      Powyższe doniesienia wyglądają jeszcze bardziej interesująco w zestawieniu z badaniami na temat różnic w układzie odpornościowym pomiędzy łowcami-zbieraczami a rolnikami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy odkryli setki gigantycznych bakteriofagów, wirusów zabijających bakterie. Okazało się, że mają one cechy przynależne żywym organizmom, co zaciera granicę pomiędzy mikroorganizmami a wirusami. Ich rozmiary i złożoność budowy dorównują strukturom, które bezspornie uznajemy za żywe. W nowo odkrytych bakteriofagach znaleziono geny typowe dla bakterii, które bakterie używają przeciwko swoim gospodarzom.
      Niezwykłego odkrycia dokonali uczeni z University of California, Berkeley (UCB). Najpierw pobrali oni liczne próbki z 30 różnych ziemskich środowisk, od przewodu pokarmowego wcześniaków i ciężarnych kobiet, przez tybetańskie gorące źródło, południowoafrykański bioreaktor po pokoje szpitalne, oceany, jeziora obszary położone głęboko pod ziemią. Na podstawie tych próbek utworzyli wielką bazę DNA i zaczęli ją analizować.
      Analiza wykazała obecność 351 różnych gatunków gigantycznych bakteriofagów. Każdy z nich miał genom co najmniej 4-krotnie dłuższy niż genom przeciętnego znanego dotychczas bakteriofaga. Rekordzistą był tutaj bakteriofag o genomie złożonym z 735 000 par bazowych. To 15--krotnie więcej niż genom przeciętnego faga. Ten genom jest bardziej rozbudowany niż genomy wielu bakterii, którymi żywią się fagi.
      Badamy mikrobiomy Ziemi i czasem znajdujemy coś niespodziewanego. Te gigantyczne fagi zacierają różnice pomiędzy bakteriofagami, które nie są uważane za organizmy żywe, a bakteriami i archeonami. Natura znalazła sposób na istnienie czegoś, co jest hybrydą pomiędzy tego, co uznajemy za tradycyjne wirusy, a tradycyjne żywe organizmy, mówi profesor Jill Banfield.
      Innym zdumiewającym odkryciem było spostrzeżenie, że w DNA tych olbrzymich fagów znajdują się fragmenty CRISPR, czyli systemu używanymi przez bakterie do obrony przed bakteriofagami. Prawdopodobnie gdy fag wprowadza swoje DNA do wnętrza bakterii jego system CRISPR zwiększa możliwość bakteryjnego CRISPR, prawdopodobnie po to, by lepiej zwalczać inne fagi.
      Te fagi tak przebudowały system CRISPR, który jest używany przez bakterie i archeony, by wykorzystać go przeciwko własnej konkurencji i zwalczać inne fagi, mówi Basem Al-Shayeb, członek zespołu badawczego.
      Okazało się również, że jeden z nowo odkrytych fagów wytwarza proteinę analogiczną do Cas9, proteiny wykorzystywanej w unikatowej technologii edycji genów CRISPR-Cas9. Odkrywcy nazwali tę proteinę Cas(fi), gdyż grecką fi oznacza się bakteriofagi. Badając te wielkie fagi możemy znaleźć nowe narzędzia, które przydadzą się na polu inżynierii genetycznej. Znaleźliśmy wiele nieznanych dotychczas genów. Mogą być one źródłem nowych protein dla zastosowań w przemyśle, medycynie czy rolnictwie, dodaje współautor badań Rohan Sachdeva.
      Nowe odkrycie może mieć też znaczenie dla zwalczania chorób u ludzi. Niektóre choroby są pośrednio wywoływane przez fagi, gdyż fagi są nosicielami genów powodujących patogenezę i antybiotykooporność. A im większy genom, tym większa zdolność do przenoszenia takich genów i tym większe ryzyko, że takie szkodliwe geny zostaną przez fagi przeniesione na bakterie żyjące w ludzkim mikrobiomie.
      Jill Banfield od ponad 15 lat bada różnorodność bakterii, archeonów i bakteriofagów na całym świecie. Teraz, na łamach Nature, poinformowała o zidentyfikowaniu 351 genomów bakteriofagów o długości ponad 200 kilobaz. To czterokrotnie więcej więc długość genomu przeciętnego bakteriofaga. Udało się też określić dokładną długość 175 nowo odkrytych genomów. Najdłuższy z nich, i absolutny rekordzista w świecie bakteriofagów, ma 735 000 par bazowych. Uczeni sądzą, że genomy, których długości nie udało się dokładnie ustalić, mogą być znacznie większe niż 200 kilobaz.
      Większość z genów nowo odkrytych bakteriofagów koduje nieznane białka. Jednak naukowcom udało się zidentyfikować geny kodujące proteiny niezbędne do działania rybosomów. Tego typu geny nie występują u wirusów, a u bakterii i archeonów. Tym co odróżnia cząstki nie będące życiem od życia jest posiadanie rybosomów i związana z tym zdolność do translacji białek. To właśnie jedna z najważniejszych cech odróżniających wirusy od bakterii, czyli cząstki nie będące życiem od organizmów żywych. Okazuje się, że niektóre z tych olbrzymich fagów posiadają znaczną część tej maszynerii, zatem nieco zacierają te granice, przyznaje Sachdeva.
      Naukowcy przypuszczają, że olbrzymie fagi wykorzystują te geny do pokierowania bakteryjnymi rybosomami tak, by wytwarzały kopie protein potrzebnych fagom, a nie bakteriom. Niektóre z tych fagów posiadają tez alternatywny kod genetyczny, triplety, które kodują specyficzne aminokwasy, co może zmylić bakteryjne rybosomy.
      Jakby tego było mało, nowo odkryte bakteriofagi posiadają geny kodujące różne odmiany protein Cas. Niektóre mają też macierze CRISPR, czyli takie obszary bakteryjnego genomu, gdzie przechowywane są fragmenty genomu wirusów, służące bakteriom do rozpoznawania i zwalczania tych wirusów.
      Uczeni stwierdzili, że fagi z wielkimi genomami są dość rozpowszechnione w ekosystemach Ziemi. Ich obecność nie ogranicza się do jednego ekosystemu.
      Odkryte wielkie fagi zostały przypisane do 10 nowych kladów. Każdy z nich posiada w nazwie słowo „wielki” w języku jednego z autorów badań. Te nowe klady to Mahaphage (z sanskrytu), Kabirphage, Dakhmphage i Jabbarphage (z arabskiego), Koydaiphage (japoński), Biggiephage (angielski z Australii), Whopperphage (angielski z USA), Judaphage (chiński), Enormephage (francuski) oraz Keampephage (duński).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wielu osobom przebywającym na oddziałach intensywnej opieki medycznej podaje się probiotyki. Okazuje się jednak, że u niewielkiego odsetka pacjentów mogą one powodować bakteremię. Obecne w probiotykach bakterie mogą bowiem dostawać się do krwi pacjentów.
      O zauważeniu takiego zjawiska informuje na łamach Nature grupa naukowców z Wydziału Biologii Izraelskiego Instytutu Technologicznego Technion w Hajfie oraz z Boston's Children Hospital, Harvard Medical School i Walter Reed Army Institute of Research w USA.
      Wszystko zaczęło się od spostrzeżenia, jakiego dokonano w Boston Children's Hospital. Otóż w latach 2009–2014 na tamtejszy OIOM przyjęto 22 174 pacjentów. Wśród nich były 522 osoby, które otrzymywały probiotyki zawierające szczep Lactobacillus rhamnosus GG (LGG). Bakteremia pojawiła się u 6 (1,1%) z tych pacjentów. Tymczasem w grupie 21 652 pacjentów, którzy nie otrzymywali probiotyków z LGG bakteremie zaobserwowano u 2 osób (0,009%). Innymi słowy, w grupie przyjmującej probiotyki ryzyko wystąpienia bakteremii było ponad 100-krotnie większe. Naukowcy postanowili bliżej się temu przyjrzeć. Chcieliśmy sprawdzić, czy możemy zidentyfikować przyczyny wystąpienia bakteremii i czy uda się nam opracować rekomendacje dotyczące podawania probiotyków pacjentom OIOM-u, mówi jedna z głównych autorek badań, doktor Kelly Flett.
      Najpierw szczegółowo zbadano same bakterie z krwi chorych i stwierdzono, że we wszystkich 6 przypadkach osób, które przyjmowały probiotyki we krwi występują Lactobacillus rhamnosus. U obu osób nieprzyjmujących probiotyków bakteremia była wywołana przez inne gatunki Lactobacillus. Warto tutaj zauważyć, że bakteremia spowodowana przez Lactobacillus rhamnosus występuje w całej populacji z częstotliwością 0,00007%, zatem zdarza się kilkanaście tysięcy razy rzadziej, niż wspomniany 1,1% pacjentów OIOM-u przyjmujących probiotyki.
      By stwierdzić, czy to probiotyki wywołały bakteremie, wykonano szczegółowe analizy kodu genetycznego bakterii wyizolowanych z krwi pacjentów, a wyniki porównano z genomem bakterii obecnych w probiotykach LGG. Okazało się, że genomy są niemal identyczne. We wszystkich próbkach łącznie wykryto jedynie 23 polimorfizmy pojedynczego nukleotydu (SNP), a odległość pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków i z krwi pacjentów była mniejsza niż pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków a klonami LGG przechowywanymi w banku genetycznym. Co więcej, nie stwierdzono żadnej mutacji, która jednoznacznie pozwoliłaby odróżnić bakterie z probiotyków od bakterii z krwi.
      Autorzy badań podkreślają, że u wspomnianych 6 pacjentów, u których rozwinęła się bakteremia, nie występowały typowe czynniki ryzyka bakteremii Lactobacillus. Co więcej, gdy osoby te porównano z 16 innymi pacjentami OIOM-u, którzy też przyjmowali probiotyki, ale u których bakteremia nie wystąpiła, nie stwierdzono żadnych istotnych różnic takich jak użycie sprzętu medycznego w czasie pobytu w szpitalu, zabiegi chirurgiczne, występowanie biegunki, przyjmowanie antybiotyków i inne. To zaś wskazuje, że prawdopodobnie trudno będzie zidentyfikować tych pacjentów, którzy są narażeni na rozwój bakteremii.
      Naukowcy nie wiedzą, w jaki sposób doszło do zakażenia krwi. Wszyscy pacjenci mieli założone wkłucie centralne, które jest jedną z możliwych dróg zakażenia. Inną możliwością jest przeniknięcie bakterii przez ścianę pęcherza.
      Badania wykazały istotne statystycznie zwiększone ryzyko rozwoju bakteremii u pacjentów OIOM-u przyjmujących probiotyki z LGG. Stwierdzono także, że już po przeniknięciu do krwioobiegu pacjenta bakterie ewoluują. Nie można wykluczyć, że nabywają wówczas oporności na antybiotyki, chociaż nie ma też pewności, czy cech tych nie wykazywały jeszcze przed podaniem probiotyków.

      « powrót do artykułu
×
×
  • Create New...