Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Podczas IEEE Symposium on Security & Privacy eksperci z University of Michigan i Uniwersytetu Zhejiang przeprowadzili pokaz ataku akustycznego na dysk twardy. Atak taki może zakończyć się uszkodzeniem dysku i utratą danych.

Atak za pomocą dźwięku, słyszalnego bądź ultradźwięków, działa dzięki wysłaniu fal o odpowiedniej częstotliwości. Wprowadza on przedmiot ataku w wibracje. We współczesnych dyskach twardych znajdują się liczne talerze magnetyczne i głowice, umieszczone bardzo blisko ich powierzchni. Gęste upakowanie danych sprawia, że głowice muszą być bardzo precyzyjnie pozycjonowane. Najmniejsze zakłócenie może spowodować błędy w zapisie i odczycie danych. Mocne wibracje to dla dysku poważne zagrożenie. Głowice mogą uderzyć w szybko wirujące talerze, przez co może dojść do uszkodzenia zarówno talerzy jak i samych głowic.

Już wcześniejsze badania wykazały, że nagłe głośne dźwięki, jak np. alarm pożarowy, mogą wprowadzić talerze dysków w wibracje kończące się uszkodzeniem. Tajemnicą pozostawało jednak, jak i dlaczego celowo emitowane dźwięki prowadzą do błędów w pracy HDD i w konsekwencji do błędów w pracy systemu operacyjnego, mówią badacze. W opublikowanym przez siebie dokumencie szczegółowo omawiają, w jaki sposób dźwięki o różnych częstotliwościach prowadzą do utraty danych, awarii oraz fizycznych uszkodzeń dysków twardych.

Podczas jednego ze swoich eksperymentów naukowcy dowiedli, że możliwe jest wywołanie awarii laptopa z Windows 10 wykorzystując w tym celu wbudowane w komputer głośniki, przez które został nadany sygnał ultradźwiękowy o odpowiedniej częstotliwości. Zaś w czasie innego z eksperymentów wykazano, że możliwe jest czasowe zakłócenie nagrywania obrazu przez kamerę przemysłową za pomocą odpowiedniego dźwięku wysłanego ze smartfona. Badacze nazwali swoje ataki BlueNote.

Naukowcy opracowali też technikę ochrony dysku twardego przed atakiem dźwiękowym. Otóż w HDD znajduje się specjalny kontroler, którego celem jest upewnienie się, że głowice dysku pozostają w odpowiedniej pozycji. Obecnie kontrolery te nie są przygotowane na atak akustyczny. Okazuje się jednak, że wystarczy zmiana firmware'u dysku, by kontroler był w stanie kompensować ruch głowic wywołany atakiem. Ruch ten jest bowiem łatwy do przewidzenia.


« powrót do artykułu
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Witam; A ciekawe jak to się ma do dysku ''SSD'' . Na ile on jest bezpieczny przed takim atakiem?Czy coś jest wiadomo w tym temacie? Przecież tam się nic nie kręci,więc dźwięk nie powinien zaszkodzić.Pozdrawiam.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nijak. W SSD nie masz przecież mechanicznych części. Trudno więc wzbudzić tam jakąkolwiek głowicę i doprowadzić do uszkodzenia nośnika. Teoretyzować można wokół ataku dźwiękowego, który powodowałby jakieś drgania i rozłączanie się kabli w komputerze czy połączeń w slotach, ale jest to już czysta abstrakcja i zupełnie niepraktyczne. Prościej już komuś zalać laptopa lub podpiąć USB-killer. Oba te sposoby jednak wymagają bezpośredniej ingerencji i pozostawiłyby ślad.

Na SSD masz z kolei innego rodzaju ataki, ale wymagają one infekcji — szkodnik powodujący ciągły zapis i zużycie warstwy izolatora w komórkach, bądź uszkodzenie firmware.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślę, że każdą elektronikę da się zniszczyć używając dostatecznie głośnego dźwięku.

Dźwięk to fala wzdłużna rozchodząca się w ośrodku materialnym, tu ograniczmy się do powietrza. Odpowiednim dźwiękiem będzie w takim razie... fala uderzeniowa :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tylko to już wymagałoby takiego ciśnienia akustycznego, że wywiałoby wszystkie komputery przez okna z biura i zdzierało spódniczki pań sekretarek. Rozmiar subwooferów musiałby być tak wielki, że ja pierdzielę. ;) Z kolei strzelanie czymś w rodzaju LRAD-u też byłoby zauważalne… To już lepiej wykonywać ataki dźwiękowe na jakieś upierdliwe call-center z ankieterami (słuchawki). ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 22.06.2018 o 22:15, Tomasz21 napisał:

Na ile on jest bezpieczny przed takim atakiem

Ciężko powiedzieć. Połączenia w układach scalonych są dość delikatne. Odpowiednia częstotliwość mogłaby zniszczyć elektronikę na poziomie połączeń. Ale to wymaga doświadczeń. Łatwiej pewnie byłoby użyć jakiegoś źródła promieniowania.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Witam; Dzięki za odpowiedzi. Czyli bez prób nic się nie dowiemy; potrzeba przeprowadzić testy na sprzęcie. Czyli jak nas niema w domu.

To puszczona silna wiązka odp.częstotliwości może załatwić Pc-ta. Na przykład komuś, kto się udziela '' społecznie ''. Śladu niema,a delikwent ma załatwiony sprzęt. I tak naprawdę nie wie co się stało. ( przypadek ).

Edytowane przez wilk
Proszę przestać pisać kolorkami.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
23 godziny temu, wilk napisał:

Tylko to już wymagałoby takiego ciśnienia akustycznego, że wywiałoby wszystkie komputery przez okna z biura i zdzierało spódniczki pań sekretarek. Rozmiar subwooferów musiałby być tak wielki, że ja pierdzielę.

No właśnie. A w artykule mowa o wykorzystaniu sprzętu użytkownika czyli raczej głośniczki "kilka wat".

15 godzin temu, Tomasz21 napisał:

Śladu niema,a delikwent ma załatwiony sprzęt. I tak naprawdę nie wie co się stało. ( przypadek ).

Taki atak na dzień dzisiejszy (jak dla mnie) ląduje w strefie "teorii spiskowych".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Akademii Górniczo-Hutniczej w Krakowie i Katedry Ogrodnictwa Uniwersytetu Przyrodniczego we Wrocławiu badają dźwięki wydawane przez rośliny. Naukowcy chcą sprawdzić, czy w warunkach stresowych – jak susza lub atak szkodników – rośliny informują dźwiękiem o swoim stanie. To nie tylko zwiększy naszą wiedzę o roślinach, ale pomoże też lepiej dbać o uprawy wielkopowierzchniowe. Dotychczas na świecie prowadzono niewiele badań nad tym zagadnieniem.
      Pierwsze eksperymenty przeprowadzono w szklarni doświadczalnej Centrum Innowacyjnych Technologii Produkcji Ogrodniczej Uniwersytetu Przyrodniczego we Wrocławiu. Badaniu poddano tam małe sadzonki pomidorów. Okazało się, że rośliny emitowały impulsy w ultradźwiękach, a ich częstotliwość zmieniała się wraz ze zmianą pory dnia. Więcej impulsów generowane było za dnia niż w nocy.
      Kolejny etap badań prowadzono w komorze bezechowej Laboratorium Akustyki Technicznej AGH. Użyty tam specjalistyczny sprzęt pozwolił na rejestrowanie dźwięków o częstotliwości powyżej 200 kHz. Tak duża czułość jest potrzebna, gdyż różne rośliny emitują dźwięki o różnej częstotliwości. O ile zakres dźwięków emitowanych przez pomidory wynosi 20–50 kHz, to z literatury wiadomo, że zboża czy winorośl wydają dźwięki o częstotliwości 80–150 kHz.
      Badania w komorze bezechowej trwały kilka tygodni. Umieszczona w niej roślina została otoczona przez 8 specjalistycznych mikrofonów, dzięki czemu można było też sprawdzić kierunek emisji dźwięku. W ten sposób przebadano kilka sadzone pomidorów. Najpierw były one prawidłowo nawożone i podlewane, następnie je przesuszano, aż do całkowitego wyschnięcia. Okazało się, że gdy rodzina schła, emitowała coraz bardziej intensywne impulsy dźwiękowe. Teraz naukowcy zajmują się analizą zmian zachodzących w dźwiękach wydawanych przez wysychającą roślinę.
      Badania akustyczne mogłyby znaleźć zatem zastosowanie w kolejnym, bardzo nieoczywistym, obszarze jakim są hodowle kontrolowane roślin, a te jak wiemy zyskują na coraz większej popularności na świecie. Oprócz danych związanych z wilgotnością czy temperaturą otoczenia hodowcy mogliby na podstawie sygnału bezpośrednio od rośliny decydować o wzmocnieniu nawożenia, intensywniejszym podlewaniu czy ochronie przed szkodnikami, bez fizycznej obecności na miejscu, stwierdzają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Washington zauważyli, że są w stanie wykryć „atomowy oddech” czyli wibracje mechaniczne pomiędzy dwiema warstwami atomów. Dokonali tego obserwując światło emitowane przez atomy wzbudzone laserem. Odkryte zjawisko można wykorzystać do zakodowania i przesłania informacji kwantowej. Uczeni zbudowali urządzenie, które może stać się elementem składowym przyszłych technologii kwantowych.
      To nowa platforma w skali atomowej, która wykorzystuje optomechanikę, szereg zjawisk w których ruch światła i ruch mechaniczny są ze sobą nierozerwalnie powiązane. Mamy tutaj efekty kwantowe, które możemy wykorzystać do kontrolowania pojedynczego fotonu przemieszczającego się przez zintegrowane obwody optyczne, mówi profesor Mo Li, który stał na czele grupy badawczej.
      Ostatnie badania bazowały na wcześniejszych pracach związanych z ekscytonami. To kwazicząstki w których można zakodować informację kwantową, a następnie przesłać ją w postaci fotonu, którego właściwości kwantowe (jak polaryzacja czy długość fali) pełnią rolę kubitu. A jako że kubit ten jest niesiony przez foton, informacja przemieszcza się z prędkością światła. Fotony są naturalnym wyborem jako nośnik informacji kwantowej, gdyż potrafimy przesyłać je za pomocą światłowodów szybko na duże odległości, nie tracą przy tym zbyt wielu informacji, dodaje doktorantka Adina Ripin.
      Naukowcy pracowali w ekscytonami chcąc stworzyć urządzenie emitujące pojedyncze fotony. Obecnie w tym celu używa się atomowych macierzy, takich jak np. znajdujące się w diamentach. Jednak w macierzach takich występują naturalne defekty, które zaburzają pracę tego typu urządzeń. Naukowcy z Uniwersity of Washington chcieli precyzyjnie kontrolować miejsce, z którego będzie dochodziło do emisji fotonu.
      Wykorzystali w tym celu nałożone na jednoatomowe warstwy diselenku wolframu. Dwie takie warstwy nałożyli na podłoże, na którym znajdowały się setki kolumienek o szerokości 200 nanometrów każda. Diselenek wolframu przykrył te kolumienki, a ich obecność pod spodem doprowadziła do pojawienia się niewielkich naprężeń w materiale. W wyniku naprężeń znajdujących się w miejscu każdej z kolumienek powstała kropka kwantowa. I to właśnie te kropki są miejscem, w którym dochodzi do emisji. Dzięki precyzyjnemu impulsowi laserowemu naukowcy byli w stanie wybić elektron, tworząc w ten sposób ekscytony. Każdy z ekscytonów składał się z ujemnie naładowanego elektronu z jednej warstwy diselenku wolframu i dodatnio naładowanej dziury z drugiej warstwy. Po chwili elektron wracał w miejsce, w którym przed chwilą się znajdował, a ekscyton emitował foton z zakodowaną informacją kwantową.
      Okazało się jednak, że poza fotonami i ekscytonami jest coś jeszcze. Powstawały fonony, kwazicząstki będące produktem wibracji atomowych.
      W ten sposób po raz pierwszy zaobserwowano fonony w emiterze pojedynczych fotonów w dwuwymiarowym systemie atomowym. Bliższe analizy wykazały, że każdy foton emitowany w ekscytonu był powiązany z jednym lub więcej fononami. Naukowcy postanowili więc wykorzystać to zjawisko. Okazało się, że za pomocą napięcia elektrycznego mogą wpływać na energię interakcji pomiędzy fotonami i fononami. Zmiany te są mierzalne i można je kontrolować.
      To fascynujące, że możemy tutaj obserwować nowy typ hybrydowej platformy kwantowej. Badając interakcję pomiędzy fononami a kwantowymi emiterami, odkryliśmy zupełnie nową rzeczywistość i nowe możliwości kontrolowania i manipulowania stanami kwantowymi. To może prowadzić do kolejnych odkryć w przyszłości, dodaje Ruoming Peng, jeden z autorów badań.
      W najbliższym czasie naukowcy chcą stworzyć falowody, za pomocą których będą przechwytywali wygenerowane fotony i kierowali je w wybrane miejsca. Mają tez zamiar skalować swój system, by jednocześnie kontrolować wiele emiterów oraz fonony. W ten sposób poszczególne emitery będą mogły wymieniać informacje, a to będzie stanowiło podstawę do zbudowania kwantowego obwodu. Naszym ostatecznym celem jest budowa zintegrowanego systemu kwantowych emiterów, które mogą wykorzystywać pojedyncze fotony przesyłane za pomocą przewodów optycznych oraz fonony i używać ich do kwantowych obliczeń, wyjaśnia Li.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z Massachusetts Institute of Technology (MIT) odkryli sposób na szybsze przełączanie stanu antyferromagnetyków. Opracowana przez nich technologia zakłada wzbogacenie materiału antyferromagnetycznego o dodatkowe elektrony. Takie materiały posłużą do budowy szybciej działających nośników danych o większej gęstości i lepszej stabilności.
      Dyski twarde przechowują dane wykorzystując impulsy magnetyczne do zmiany spinu elektronów w materiałach ferromagnetycznych. Te różne stany spinów reprezentują 0 i 1. Impulsy magnetyczne potrzebne do przeprowadzenia takiej zmiany wymagają jednak stosunkowo silnego prądu, przez co całość jest energochłonna. Ponadto całkowita zmiana spinu to proces dość powolny, trwający dziesiątki nanosekund.
      Antyferromagnetyki to obiecujące materiały dla przyszłych nośników danych o dużej gęstości. Stany ich spinów można zmieniać znacznie szybciej. Jest to możliwe dzięki silnymi interakcjami pomiędzy spinami, gdyż w antyferromagnetykach mają tendencję do ustawiania się przeciwrównolegle. W ferromagnetykach zaś są równoległe.
      Ponadto antyferromagnetyki nie wykazują magnetyzacji w skali mniejszej niż 10 nm, co czyni je odpornymi na zakłócenia ze strony zewnętrznych pól magnetycznych. To oznacza, że dane zapisane w antyferromagnetyku nie mogą zostać usunięte za pomocą pola magnetycznego. Kolejną zaletą antyferromagnetyków jest fakt, że można z nich robić mniejsze tranzystory niż z krzemu i innych konwencjonalnych materiałów.
      Riccardo Comin i jego koledzy z MIT postanowili sprawdzić, czy będą w stanie manipulować antyferromagnetycznymi właściwościami 100-nanometrowych warstw tlenku samarowo-niklowego (SmNi03) i tlenku neodymowo-niklowego (NdNiO3), wprowadzając do tych materiałów dodatkowe elektrony. W tym celu pozbawili badane materiały części atomów tlenu. Po każdym z usuniętych atomów pozostały dwa elektrony, które rozłożyły się pomiędzy pozostałymi atomami tlenu i atomami niklu.
      Naukowcy monitorowali cały proces za pomocą techniki krystalografii rentgenowskiej, by sprawdzić, czy struktura magnetyczna materiału się zmieniła. Okazało się, że porządek antyferromagnetyczny w badanych materiałach ulega gwałtownemu załamaniu przy wzbogaceniu ich 0,21 elektronami na atom niklu. Dochodzi do gwałtownej zmiany, podobnej do przełączania tranzystora pomiędzy stanami 0 a 1. Zmianę tę można odwrócić dodając atomy tlenu.
      Comin mówi, że antyferromagnetyczne bity można przełączać za pomocą bramek z napięciem elektrycznym. Teraz wraz z zespołem będzie pracował nad uzyskaniem lepszej kontroli nad całym procesem i zoptymalizowaniem go.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy postanowił zbadać wpływ hałasu na zwierzęta i ekosystemy morskie. Uczonych zaskoczyło, do jakiego stopnia ludzie zanieczyszczają oceany dźwiękiem, co ma negatywny wpływ na żyjące w nich zwierzęta. Hałas negatywnie wpływa na ich zachowanie, rozmnażanie, zdrowie i może przyczyniać się do śmierci zwierząt.
      Problem jest kolosalny. Na przykład u południowych wybrzeży Chile znajduje się jeden z najważniejszych na południowym Pacyfiku obszarów żerowania płetwali błękitnych. Zwierzęta przybywają tam, by wychowywać młode. Niedawne badania wykazały, że w miesiącach letnich przeciętny płetwal spotyka tam... 1000 łodzi na dobę. Musi więc bez przerwy starać się unikać kolizji, nie mówiąc już o olbrzymim hałasie generowanym przez ich silniki.
      Od czasu rewolucji przemysłowej ludzkość coraz bardziej zanieczyszcza oceany dźwiękiem. Rozwój rybołówstwa, transportu morskiego, turystyki, budowa infrastruktury i wiele innych aktywności H. sapiens powodują, że w światowych oceanach jest coraz więcej sztucznego dźwięku, przez co naturalne odgłosy są coraz słabiej słyszalne.
      Poniżej możemy posłuchać, jak olbrzymia różnica jest pomiędzy naturalnym dźwiękiem oceanu, a dźwiękiem zanieczyszczonym przez człowieka.

      Profesor Carlos M. Duarte z Uniwersytetu Nauki i Technologii im. Króla Abdullaha (KAUST) stanął teraz na czele międzynarodowego zespołu badającego wpływ hałasu na oceany.
      Krajobraz dźwiękowy to silny wskaźnik zdrowia środowiska naturalnego. To, co zrobiliśmy w naszych miastach na lądzie, w których naturalne odgłosy zastąpiliśmy sztucznie generowanym hałasem, zrobiliśmy też w oceanach, mówi Ban Halpern, współautor badań z Narodowego Centrum Analizy Ekologicznej i Syntezy na Uniwersytecie Kalifornijskim w Santa Barbara.
      Nie od dzisiaj wiemy, że niszczymy oceany wprowadzając do nich olbrzymie ilości odpadów, niszcząc wybrzeża i rafy koralowe. Znacznie trudniej jednak zauważyć to, co robimy za pomocą hałasu. Tymczasem może on być niezwykle szkodliwy. Powoduje np. że młode zwierzęta nie słyszą nawoływań rodziców i nie potrafią wrócić do bezpiecznych kryjówek. Tymczasem w projektach ochrony oceanów bardzo rzadko uwzględnia się zanieczyszczenie dźwiękiem.
      Dźwięk w wodzie podróżuje bardzo szybko i bardzo daleko. Nic więc dziwnego, że zwierzęta morskie są bardzo wyczulone na dźwięk. Wykorzystują go w całym szeregu swoich zachowań. Dźwięk odgrywa w oceanach kolosalną rolę. Ludzie wciąż nie doceniają tego aspektu środowiska morskiego, stwierdzają autorzy badań. Nikt z nas nie chciałby mieszkać koło autostrady, bo wiąże się to z ciągłym uciążliwym hałasem. Zwierzęta w oceanie bez przerwy są narażone na olbrzymi hałas.
      Naukowcy z Arabii Saudyjskiej, Danii, USA, Wielkiej Brytanii, Australii, Nowej Zelandii, Holandii, Niemiec, Hiszpanii, Norwegii i Kanady postanowili przeprowadzić dokumentację dźwięków oddziałujących na środowisko morskie na całym świecie. W tym celu przeanalizowali ponad 10 000 prac naukowych na ten temat.
      Głębokie wody oceaniczne są postrzegane przez ludzi – nawet przez specjalistów zajmujących się tym środowiskiem – jako odległe ekosystemy. Jednak gdy wiele lat temu za pomocą hydrofonu słuchałem dźwięków w oceanach, byłem zdumiony, że na głębokości 1000 metrów dominującym dźwiękiem był... dźwięk padającego na powierzchni deszczu. I wtedy zdałem sobie sprawę, jak olbrzymią rolę odgrywa dźwięk w oceanach. W ciągu zaledwie sekundy dociera on z powierzchni na kilometr pod wodę, mówi Duarte.
      Autorzy badań uważają, że w wysiłkach na rzecz ochrony oceanów należy brać pod uwagę hałas generowany przez ludzi. I hałas ten należy zmniejszać. Wiele takich działań można przeprowadzić już teraz i nie byłyby one zbyt skomplikowane. Istnieją np. technologie produkcji cichych silników okrętowych. Powoli się one rozpowszechniają, a wprowadzenie odpowiednich przepisów spowodowałoby ich szybsze wdrożenie i zmniejszenie tym samym hałasu w oceanach.
      Co więcej, tego typu działania odniosłoby natychmiastowy skutek. Gdy np. zanieczyszczamy ocean środkami chemicznymi i przestajemy je stosować, minie wiele lat, gdy środki te przestaną negatywnie oddziaływać na środowisko. W przypadku dźwięku zmniejszenie hałasu natychmiast poprawia sytuację. I środowisko natychmiast reaguje, czego dowodem jest jego szybki odradzanie się w związku ze zmniejszoną aktywnością człowieka spowodowaną COVID-19.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W laboratorium IBM-a w Zurichu zaprezentowano rekordowo pojemny napęd taśmowy. Pojedynczy kartridż pozwala na przechowanie aż... 580 terabajtów danych. To aż 29-krotnie więcej niż oferowany obecnie przez IBM-a kartridż o pojemności 20 TB. Błękitny Gigant jest tutaj rynkowym liderem. Najnowszy standard przemysłowy LTO-Ultrium (Linear Tape-Open, version 9) mówi o kartridżach o pojemności 18 TB.
      Mark Lantz, menedżer CloudFPGA odpowiedzialny w IBM Zurich za technologie taśmowe mówi, że w ostatnich latach taśmy magnetyczne przeżywają swój renesans. Ma to związek z jednej strony z wykładniczym wzrostem ilości wytwarzanych danych, które trzeba gdzieś archiwizować oraz z jednoczesnym spowolnieniem przyrostu gęstości zapisu na dyskach twardych. Jak zauważa Lantz, w ciągu ostatnich kilkunastu lat składane roczne tempo wzrostu gęstości zapisu na HDD spadło do poniżej 8%. Jednocześnie świat produkuje coraz więcej danych. Roczny wzrost wytwarzania informacji wynosi aż 61%. Eksperci mówią, że do roku 2025 wytworzymy 175 zetabajtów danych.
      Jako, że gęstość zapisu HDD niemal stanęła w miejscu, dramatycznie wzrosła cena każdego gigabajta dysnku twardego. Już w tej chwili 1 bit HDD jest czterokrotnie droższy niż 1 bit taśmy magnetycznej. Ta wielka nierównowaga pojawiła się w bardzo niekorzystnym momencie, gdy ilość wytwarzanych danych zaczęła gwałtownie rosnąć. Centra bazodanowe mają coraz większy problem. Na szczęście zdecydowana większość danych to informacje, które są rzadko potrzebne. To zaś oznacza, że w ich przypadku szybkość odczytu danych nie jest rzeczą zbyt istotną. Mogą być więc przechowywane na taśmach magnetycznych.
      Taśmy mają wiele zalet w porównaniu z dyskami twardymi. Są bardziej odporne na ataki cyberprzestępców, do działania potrzebują mniej energii, są trwałe i znacznie tańsze w przeliczeniu na gigabajt. Zalety te spowodowały, że – jak ocenia IBM – już 345 000 eksabajtów danych przechowywanych jest właśnie na taśmach.
      Najnowszy napęd taśmowy to wynik 15-letniej współpracy IBM-a i Fujifilm. Od roku 2006 firmy pobiły sześć kolejnych rekordów dotyczących napędów taśmowych. Ostatnie osiągnięcie było możliwe dzięki udoskonaleniu samej taśmy, głowicy odczytującej oraz serwomechanizmu odpowiadającego za precyzję pozycjonowania głowicy. Firma Fujifilm odeszła tutaj od przemysłowego standardu jakim jest ferryt baru i pokryła taśmę mniejszymi cząstkami ferrytu strontu. Inżynierowie IBM-a, mając do dyspozycji nową taśmę, opracowali nową technologię głowicy odczytująco-zapisującej, która współpracuje z tak gładką taśmą.
      O tym jak wielkie postępy zostały dokonane w ciągu kilkunastoletniej współpracy Fujifilm i IBM-a najlepiej świadczą liczby. W roku 2006 obie firmy zaprezentowały taśmę pozwalającą na zapisanie 6,67 miliarda bitów na calu kwadratowym. Najnowsza taśma pozwala na zapis 317 miliardów bitów na cal. Kartridż z roku 2006 miał pojemność 8 TB, obecnie jest to 580 TB. Szerokość ścieżki zapisu wynosiła przed 14 laty 1,5 mikrometra (1500 nanometrów), teraz to zaledwie 56,2 nanometra. Liniowa gęstość zapisu w roku 2006 sięgała 400 000 bitów na cal taśmy. Na najnowszej taśmie na każdym calu można zapisać 702 000 bitów. Zmniejszyła się też – z 6,1 mikrometra do 4,3 mikrometra – grubość taśmy, wzrosła za to jej długość. W pojedynczym kartridżu mieści się obecnie 1255 metrów taśmy, a przed 14 laty było to 890 metrów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...