Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Inżynierowie z NASA odpowiedzialni za łazik Curiosity testują nową metodę wiercenia w marsjańskich skałach i pobierania uzyskanego w ten sposób materiału. Dzięki ich wysiłkom łazik dokonał pierwszych od ponad roku wierceń na powierzchni Czerwonej Planety. Podczas testu wywiercono otwór głębokości 50 milimetrów.

Specjaliści z Jet Propulsion Laboratory testują wiercenie udarowe od czasu, gdy w grudniu 2016 roku zepsuło się wiertło Curiosity. Technika, nazwana Feed Extended Drill, wykorzystuje dwa stabilizatory, których zadaniem było utrzymywanie odpowiedniej pozycji wiertła oraz robotyczne ramię łazika.

"Nasz zespół opracował genialną technikę wiercenia i zastosował ją na innej planecie. To 5 centymetrów kluczowej innowacji na przeprowadzonej z odległości niemal 100 milionów kilometrów. Jesteśmy szczęśliwi, że rezultaty okazały się tak dobre", mówi Steve Lee, zastępca dyrektora Projektu Curiosity.

Możliwość prowadzenia wierceń to jedna z najważniejszych cech łazika Curiosity, niezwykle ważna do prowadzenia założonych projektów badawczych. Wewnątrz łazika znajdują się dwa laboratoria, które prowadzą chemiczne i mineralogiczne analizy pozyskanego materiału.

Pomimo tego, że test nowej metody przyniósł świetne wyniki, inżynierowie nie spoczywają na laurach. Pracowaliśmy nad nową techniką przez ponad rok, ale na tym się nasze zadanie nie skończyło. Z każdym kolejnym testem będziemy analizowali dane i opracowywali kolene ulepszenia, wprowadzali je i znowu testowali, zapewnia Tom Green, który brał udział w opracowaniu nowej techniki. Inżynierowie kończą też prace nad nową techniką dostarczania pozyskanego materiału na pokład Curiosity.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Nie rozumiem. Jeśli ta wiertarka była tak strategiczna to dlaczego okazała się tak słaba? Przecież alpiniści akumulatorówką za 100zł potrafią rozwiercić wielką granitową górę za jednym podejściem.tutaj sprzęt za miliardy i taka kicha? Mogli się doradzić w Castoramie jakiego chińczyka zamontować

Share this post


Link to post
Share on other sites

Panie, ja to bym głoździem tako dziure wydłubał, a oni tyle miliardów na jakoś wiertarke wydajo!

Share this post


Link to post
Share on other sites

Często tacy naukowcy są oderwani od rzeczywistości i wymyślają coś co dawno zostało wymyślone i zrobione w wielu wariantach. Jako przykład niech będzie sterowanie peryskopem do łodzi podwodnej: urządzenie oryginalnie kosztuje majątek plus szkolenie marynarza. Aż tu nagle ktoś wpada na pomysł aby sterować tym za pomocą pada do xboxa. No i sprzęt do sterowania kosztuje mniej niż 50  USD a niemal każdy marynarz w zasadzie ma w domu xboxa lub jakąś konsole w domu więc nauka sterowania trwa chwilę. 

Share this post


Link to post
Share on other sites
21 godzin temu, tempik napisał:

 Przecież alpiniści akumulatorówką za 100zł potrafią rozwiercić wielką granitową górę

Gdyby wiertaczy na Marsie było tylu ilu wiercących alpinistów na Ziemi ( o zepsutych wiertnicach podczas wiercenia gór media milczą), to nie płakalibyśmy nad jedną zepsutą wiertarką marsjańską. Natomiast zepsucie się 100% marsjańskich wiertarek,  to już niecodzienne niekorzystne zdażenie losowe ( tzw pech), warte nagłośnienia i okazja do krytycznego skomentowania.

Edited by 3grosze

Share this post


Link to post
Share on other sites
3 godziny temu, Krzychoo napisał:

Często tacy naukowcy są oderwani od rzeczywistości i wymyślają coś co dawno zostało wymyślone i zrobione w wielu wariantach. Jako przykład niech będzie sterowanie peryskopem do łodzi podwodnej: urządzenie oryginalnie kosztuje majątek plus szkolenie marynarza. Aż tu nagle ktoś wpada na pomysł aby sterować tym za pomocą pada do xboxa. No i sprzęt do sterowania kosztuje mniej niż 50  USD a niemal każdy marynarz w zasadzie ma w domu xboxa lub jakąś konsole w domu więc nauka sterowania trwa chwilę. 

Pad do Xboxa to nie jest całe sterowanie tylko urządzenie wprowadzające dane do sterowania więc trochę się rozpedziłeś z tymi stwierdzeniami. Ale ja również mam czasem wrażenie że niektóre pomysły to ponowne wynalezienie koła. Jednak w warunkach innej planety i nie znając tematu byłbym ostrożny z krytyką.

Share this post


Link to post
Share on other sites

Ja nie rozumiem dlaczego np. baterie w takich misjach podlegają redundancji, a już instrumenty nie. Przecież to one mają badać i przesyłać dane. To tak jakby wysłać tam astronautę z 1 nogą,1 ręką,1nerką i jednym płucem. Misja wysokiego ryzyka. Do tego kwastia czasu, zapewne zaprojektowanie i wysyłanie misji to ponad dekada. Zakładając że nie biorą do tego żółtodziobów, zespół który zawali misję już raczej w swojej karierze zawodowej nie będzie miał okazji na rehabilitację

Share this post


Link to post
Share on other sites
21 godzin temu, tempik napisał:

Ja nie rozumiem dlaczego np. baterie w takich misjach podlegają redundancji, a już instrumenty nie.

Fakt! Zapasowego koła i wiertarki nie zabrali ( nieroztropność wielka) ale o zabezpieczenia zadbali:

The drill feed and the proper motion of its brake is such an important component that there is quite a lot of redundancy built into the motor. Engineer Louise Jandura explains in a 2010 article: i tu opisuje jak dużo jest tego, ale co z tego jak nie wytrzymało to co zepsuć się nie miało.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
      Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
      Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
      MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
      Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
      MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
      Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
      Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
      MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
      Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA kończy prace koncepcyjne nad drugą częścią Mars Sample Return Program, którego celem jest przywiezienie na Ziemię próbek z Marsa. Pierwszą część stanowi misja łazika Perseverance, który od 2020 roku bada Marsa i zbiera próbki. Za 10 lat mają one trafić na Ziemię. Jednak, by je przywieźć, konieczne będzie zorganizowanie kolejnej misji.
      Opracowana koncepcja opiera się na najnowszych danych z łazika Perseverance i jego przewidywanej wytrzymałości oraz na sukcesie marsjańskiego śmigłowca Ingenuity. Śmigłowiec odbył już 29 lotów i przetrwał o rok dłużej, niż zakładano.
      Plan przywiezienia próbek na Ziemię zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. To znaczna zmiana w porównaniu z pierwotną koncepcją. Zakładała ona, że jeden lądownik dostarczy na Czerwoną Powierzchnię rakietę Mars Ascent Vehicle, a drugi – osobny łazik Sample Fetch Rover odpowiedzialny za zebranie próbek.
      Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas próbki na pokład lądownika przywiozą śmigłowce. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który dostarczy je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przywiezie je na Ziemię.
      W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      W październiku rozpocznie się faza projektowa misji, która potrwa około 12 miesięcy. W tym czasie powinny powstać technologie oraz prototypy głównych elementów misji.
      Od 18 lutego 2021 roku łazik Perseverance zebrał 11 próbek gruntu i 1 próbkę atmosfery Marsa. Dostarczenie ich na Ziemię pozwoli na przeprowadzenie badań za pomocą instrumentów, które są zbyt duże i skomplikowane, by wysłać je na Marsa. Ponadto marsjańskie próbki będą mogły badać kolejne pokolenia naukowców, podobnie ja ma to miejsce z próbkami księżycowymi przywiezionymi w ramach programu Apollo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA do września przedłużyła misję marsjańskiego śmigłowca Ingenuity. W najbliższych miesiącach śmigłowiec będzie wspomagał łazik Perseverance w jego badaniach Jezero Crater. Jednocześnie będą prowadzone testy śmigłowca, które pomogą zaprojektować podobne urządzenia na potrzeby przyszłych marsjańskich misji. Ingenuity odbył już 21 lotów w atmosferze Marsa.
      Jeszcze mniej niż rok temu nie wiedzieliśmy, czy na Marsie możliwy jest kontrolowany lot statku powietrznego. Teraz chcemy zaangażować Ingenuity w drugą kampanię naukową Perseverance. Taka zmiana w tak krótkim czasie jest czymś niezwykłym i na stałe zapisze się w eksploracji przestrzeni kosmicznej, powiedział Thomas Zurbuchen, współdyrektor w Dyrektoriacie Misji Naukowych NASA.
      Od czasu swojego pierwszego lotu w kwietniu ubiegłego roku Ingenuity latał w płaskim łatwym terenie. Teraz otrzyma trudniejsze zadanie. Śmigłowiec będzie prowadził zwiad w wyschniętej delcie rzeki. Wznosi się ona na 40 metrów nad dnem krateru Jezero, jest pełna głazów, klifów, pochyłych zboczy i łach piasku. Takie ukształtowanie terenu jest bardzo atrakcyjne z naukowego punktu widzenia. Na powierzchni może znajdować się wiele interesujących utworów geologicznych.
      Jednak wszystkie te przeszkody terenowe mogą zagrozić misji łazika. Dlatego też Ingenuity będzie badał teren przed nim, pozwalając obsłudze naziemnej na wybranie optymalnej drogi. Pierwszym zadaniem Ingenuity będzie określenie, który z dwóch suchych kanałów rzecznych powinien wybrać Perseverance. Śmigłowiec nie tylko będzie dokonywał zwiadu. Ma również identyfikować interesujące cele naukowe, których badaniem mógłby zająć się łazik. NASA nie wyklucza, że może wykorzystać Ingenuity do sfotografowania struktur geologicznych znajdujących się poza zasięgiem łazika lub do poszukiwania miejsca lądowania dla misji Mars Sample Return.
      W ciągu ostatnich miesięcy specjaliści z NASA wielokrotnie aktualizowali oprogramowanie śmigłowca. Zmniejszyli dzięki temu liczbę błędów nawigacyjnych, znieśli też ograniczenie limit wysokości lotu wynoszący dotychczas 15 metrów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance pobrał pierwszą próbkę marsjańskiego gruntu. To rdzeń nieco grubszy od ołówka, który pobrano za pomocą wiertła. Został on przeniesiony do szczelnie zamykanego tytanowego pojemnika, w którym będzie czekał na transport na Ziemię. Jednym z zadań misji Mars 2020 jest pobranie około 35 próbek, które w ciągu dekady zostaną przywiezione na naszą planetę.
      NASA i ESA (Europejska Agencja Kosmiczna) już planują Mars Sample Return, serię wypraw, które przywiozą próbki zebrane przez Perseverance. Będą to pierwsze w historii próbki przywiezione z innej planety na Ziemię. Tutaj zostaną szczegółowo zbadane przez naukowców.
      To historyczny moment dla wydziału naukowego NASA. Tak, jak misje Apollo dowiodły naukowej wartości próbek przywożonych z Księżyca, tak w ramach programu Mars Sample Return uczynimy to z próbkami zbieranymi przez Perseverance. Sądzimy, że dostępne w ziemskich laboratoriach instrumenty naukowe najwyższej klasy przyniosą zaskakujące odkrycia i pozwolą odpowiedzieć na pytanie, czy na Marsie kiedykolwiek istniało życie, stwierdził Thomas Zurbuchen, dyrektor NASA ds. naukowych.
      Pobieranie próbki rozpoczęto 1 września, kiedy to łazik rozpoczął wiercenie w skale nazwanej „Rochette”. Po zakończeniu wiercenia rdzeń został przeniesiony do tuby, a kamera Mastcam-Z wykonała zdjęcia jej wnętrza. Gdy dotarły one na Ziemię i kontrola misji potwierdziła, że próbki znajdują się w tubie, wysłano do łazika polecenie dokończenia całego procesu. Dzisiaj tuba o numerze seryjnym 266 została przeniesiona do wnętrza łazika, gdzie została zmierzona i sfotografowana. Następnie tuba została szczelnie zamknięta, Perseverance wykonał kolejne jej zdjęcie i przeniósł ją do magazynu w swoim wnętrzu.
      Sampling and Caching System składa się z ponad 3000 części. Jest to najbardziej skomplikowany mechanizm, jaki kiedykolwiek został wysłany w przestrzeń kosmiczną. Jesteśmy niezwykle podekscytowani widząc, jak dobrze spisuje się on na Marsie i że pierwszy krok w kierunku dostarczenia próbek na Ziemię został wykonany, cieszy się Larry D. James, dyrektor w Jet Propulsion Laboratory.
      Przypomnijmy, że miesiąc temu Perseverance próbował już pobrać rdzeń skały. Wówczas się to nie udało, a analiza danych wykazała, że skała, w której wiercono, była zbyt luźna, więc nie została pobrana.
      Perseverance znajduje się obecnie w regionie nazwanym Artuby. To szeroka na 900 metrów granica pomiędzy dwiema jednostkami geologicznymi. Naukowcy sądzą, że zawiera ona najgłębsze i najstarsze z odsłoniętych warstw skał krateru Jezero. Pobranie pierwszej próbki z tego obszaru to moment przełomowy. Gdy próbki trafią na Ziemię, zdradzą nam one wiele szczegółów na temat pierwszych rozdziałów ewolucji Marsa. Niezależnie jednak od tego, jak intrygujący materiał trafił do tuby numer 266, musimy pamiętać, że nie opowie nam całej historii. W kraterze Jezero jest jeszcze wiele do zbadania, a my będziemy prowadzili naszą misję jeszcze przez wiele miesięcy i lat, stwierdził Ken Farley, jeden z naukowców pracujących przy misji 2020.
      Podstawowy etap misji Perseverance zaplanowano na kilkaset marsjańskich dni. Taki dzień zwany jest sol. Zakończy się on, gdy Perseverance wróci do miejsca lądowania. W tym czasie łazik przejedzie od 2,5 do 5 kilometrów i pobierze próbki nawet z 8 miejsc. Następnie Perseverance uda się na północ, później skręci na zachód, w miejsce drugiego etapu swojej misji – delty rzeki, która wpadała niegdyś do jeziora w Jezero. Obszar ten może być bardzo bogaty w iły. Na Ziemi w takim materiale mogą być obecne mikroskopijne skamieniałe ślady, które mogą świadczyć o procesach biologicznych sprzed milionów lat. NASA liczy, że i na Marsie trafi na tego typu ślady.
      Głównym zadaniem misji Mars 2020 jest prowadzenie badań astrobiologicznych, w tym poszukiwanie śladów dawnego życia. To pierwsza misja, w ramach której zbierane są i przechowywane próbki marsjańskiego gruntu. Ma ona przetrzeć drogę załogowej misji na Czerwoną Planetę.
      Mars 2020 to część większego projektu o nazwie Moon to Mars. W jego ramach zaplanowano m.in. misję Artemis na Księżyc. Srebrny Glob będzie najprawdopodobniej przystankiem podczas załogowej eksploracji Marsa.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...