-
Similar Content
-
By KopalniaWiedzy.pl
Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic, dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA tymczasowo straciła kontakt z Voyagerem 2, drugim najodleglejszym od Ziemi pojazdem kosmicznym wysłanym przez człowieka. Przed dwoma tygodniami, 21 lipca, popełniono błąd podczas wysyłania serii komend do Voyagera, w wyniku czego jego antena odchyliła się o 2 stopnie od kierunku wskazującego na Ziemię. W tej chwili Voyager, który znajduje się w odległości niemal 20 miliardów kilometrów od naszej planety, nie może odbierać poleceń ani przesyłać danych.
W wyniku zmiany położenia anteny Voyager nie ma łączności z Deep Space Network (DSN), zarządzaną przez NASA siecią anten służących do łączności z misjami międzyplanetarnymi. W skład DSN wchodzą trzy ośrodki komunikacyjne, w Barstow w Kalifornii, w pobliżu Madrytu i Canberry. Rozmieszczono je tak, by każda misja w głębokim kosmosie miała łączność z przynajmniej jednym zespołem anten. Ośrodek z Canberry, którego jedna z anten jest odpowiedzialna za komunikację z sondą, będzie próbował skontaktować się z Voyagerem, w nadziei, że uda się nawiązać łączność.
Na szczęście NASA zabezpieczyła się na tego typu przypadki. Kilka razy w roku Voyagery resetują położenie swoich anten tak, by mieć łączność z Ziemią. Najbliższy reset nastąpi 15 października. Jeśli więc wcześniej nie uda się połączyć z Voyagerem, będzie można się z nim skomunikować za 2,5 miesiąca.
Voyager 2 został wystrzelony 20 sierpnia 1977 roku. Odwiedził Jowisza, Saturna, Urana i Neptuna, a w 2018 roku opuścił heliosferę i wszedł w przestrzeń międzygwiezdną, dostarczając intrygujących wyników badań. NASA nie po raz pierwszy nie ma kontaktu z sondą. W 2020 roku agencja nie kontaktowała się z nią przez 8 miesięcy, gdyż remontowana była antena DSS 43 w pobliżu Canberry, której zadaniem jest wymiana informacji z sondą.
Voyagery zasilane są radioizotopowymi generatorami termoelektrycznymi, które zamieniają w prąd elektryczny ciepło generowane przez rozpad plutonu-238. Zapasy plutonu stopniowo się wyczerpują, więc naukowcy wyłączają kolejne zużywające prąd urządzenia. Najprawdopodobniej obie sondy stracą zasilanie w 2025 roku. Do tej pory jednak naukowcy spróbują wycisnąć z nich najwięcej, jak się da.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA i DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) poinformowały o rozpoczęciu współpracy, której celem jest zbudowanie jądrowego silnika termicznego (NTP) dla pojazdów kosmicznych. Współpraca będzie odbywała się w ramach programu DRACO (Demonstration Rocket for Agile Cislunar Operations), który od jakiegoś czasu prowadzony jest przez DARPA.
Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
Administrator NASA Bill Nelson powiedział, że silnik może powstać już w 2027 roku. Ma on umożliwić szybsze podróżowanie w przestrzeni kosmicznej, co ma olbrzymie znacznie dla bezpieczeństwa astronautów. Skrócenie czasu lotu np. na Marsa oznacza, że misja załogowa mogłaby zabrać ze sobą mniej zapasów, ponadto im krótsza podróż, tym mniejsze ryzyko, że w jej trakcie dojdzie do awarii. Jądrowy silnik termiczny może być nawet 4-krotnie bardziej wydajny niż silnik chemiczny, a to oznacza, że napędzany nim pojazd będzie mógł zabrać cięższy ładunek i zapewnić więcej energii dla instrumentów naukowych. W silniku takim reaktor jądrowy ma być wykorzystywany do generowania ekstremalnie wysokich temperatur. Następnie ciepło z reaktora trafiałoby do ciekłego paliwa, które – gwałtownie rozszerzając się i uchodząc z duża prędkością przez dysze – będzie napędzało pojazd.
To nie pierwsza amerykańska próba opracowania jądrowego silnika termicznego. Na początku lat 60. ubiegłego wieku rozpoczęto projekt NERVA (Nuclear Engine for Rocket Vehicle Application). Projekt zaowocował powstaniem pomyślnie przetestowanego silnika. Jednak ze względu na duże koszty, prace nad silnikiem zakończono po 17 latach badań i wydaniu około 1,4 miliarda USD.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.