Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Bozon Higgsa ma już coraz mniej miejsc, w których może się ukryć. Dwa zespoły badaczy pracujące w ramach eksperymentów CMS i Atlas na Wielkim Zderzaczu Hadronów wyeliminowały około 95% procent zakresu masy, w którym może występować Boska Cząsteczka.

Higgs, jeśli istnieje, znajduje się pomiędzy 114 a 145 gigaelektronowoltów - powiedział podczas konferencji Lepton-Proton profesor Vivek Sharma z Uniwersytetu Kalifornijskiego w San Diego. Naukowiec jest odpowiedzialny za prace prowadzone w ramach CMS.

Naukowcy już przed kilkoma tygodniami zaobserwowali pewne sygnały, które mogą świadczyć o znalezieniu bozonu Higgsa, jednak wciąż dysponują zbyt małą ilością danych, by mieć pewność, że odkryli to, czego szukali.

Wchodzimy w bardzo ekscytującą fazę poszukiwań bozonu Higgsa. Jeśli istnieje on w zakresie 114-145 GeV, to wkrótce powinniśmy zacząć otrzymywać statystycznie znaczący nadmiar sygnałów w porównaniu z sygnałami tła. A jeśli ich nie otrzymamy, to należy całkowicie wykluczyć ten zakres masy. Tak czy inaczej idziemy w kierunku wielkiego odkrycia, które prawdopodobnie nastąpi przed końcem bieżącego roku - mówi Sharma.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wiadomość bardzo optymistyczna, jednak brakuje mi paru zdań wyjaśnienia, które pozwolę sobie tutaj podać.

Zgodnie z teorią dualizmu korpuskularno-falowego, każdej cząstce odpowiada pewna długość fali, czyli jednocześnie pewna energia, zwyczajowo podawana w gigaelektronowoltach (GeV). Dotychczasowe badania dowodzą więc, że energia "boskiej cząstki" znajduje się w stosunkowo wąskim przedziale.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

...energia "boskiej cząstki" znajduje się w stosunkowo wąskim przedziale.

albo się nie znajduje, bo on nie istnieje:P czas pokaże;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet, gdy okaże się, że jest to sama idea istnienia tej tzw. boskiej cząstki jest tak durna, że nie wiem czemu oni nazywają się naukowcami. Weźmy na logikę. Jeśli Bozon Higgsa stworzył wszechświat to co stworzyło tę cząstkę? Była sobie przez wieczność? A może nic przed nią nie było a potem nagle ni z tego ni z owego czary mary i jest. Wszystko ma swoją przyczynę i skutek, nie da się tego pominąć.

Pozostaje tylko jedna wersja, że wszechświat istniał od zawsze, w takiej czy innej formie. Żadne LHC tego nie udowodni...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Żadne LHC tego nie udowodni...

 

Problem powstania Wszechświata dawno juz został rozwiązany tu na KW i to wielokrotnie. Nie wiem po co oni zbudowali to LHC przecież mogli sie zapytać nas. Taniej i szybciej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wiadomość bardzo optymistyczna, jednak brakuje mi paru zdań wyjaśnienia, które pozwolę sobie tutaj podać.

Zgodnie z teorią dualizmu korpuskularno-falowego, każdej cząstce odpowiada pewna długość fali, czyli jednocześnie pewna energia, zwyczajowo podawana w gigaelektronowoltach (GeV). Dotychczasowe badania dowodzą więc, że energia "boskiej cząstki" znajduje się w stosunkowo wąskim przedziale.

 

Pomieszałeś. Tu nie chodzi o energię kinetyczną cząstki a o jej masę spoczynkową. Masę spoczynkową cząstki można wyrazić w takich jednostkach jak eV/c2 (co wynika z formuły Einsteina E = mc2). W fizyce cząstek zwykło się (dla wygody) wykorzystywać tzw. jedostki naturalne (jednostki Plancka). Otrzymuje się je przyjmując prędkość światła i zredukowaną stałą plancka za równe 1 (c = 1, h kreślone = 1). Uprawsza to sporo. Np. równoważność masy i energii w takim zapisie przyjmuje trywialną formę E = m. I to jest powód tego, że masa cząstek wyrażana jest po prostu w jednostkach energii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

[table][tr][td]

''    Ludzie wyróżniali się spośród innych istot żywych głównie tym, że byli ogromnie zainteresowani swoim otoczeniem. Z czasem mutacje doprowadziły do tego, że na Ziemi pojawił się dziwny rodzaj ludzi. Zachowywali się zuchwale. Nie zadowalało ich podziwianie wspaniałości świata. Pytali: „jak?” Jak został stworzony Wszechświat? Jak to, z  czego jest zrobiony, może być odpowiedzialne za całe niewiarygodne bogactwo naszego świata: gwiazdy, planety, wydry, oceany, rafy koralowe, światło słoneczne, ludzki mózg? Tylko dzięki pracy oraz poświęceniu setek pokoleń mistrzów i  uczniów można było znaleźć odpowiedź na pytania stawiane przez mutantów. Wiele odpowiedzi było błędnych czy wręcz żenujących. Na szczęście jednak mutanci nie znali uczucia wstydu. Tych mutantów zwiemy fizykami.

[/td][/tr][tr][td]

      Dziś, po dwóch tysiącach lat roztrząsania tego pytania – w  kosmologicznej skali czasu jest to zaledwie mgnienie oka – zaczynamy pojmować całość historii stworzenia. W naszych teleskopach i  mikroskopach, w  obserwatoriach i  w  laboratoriach – i  na kartkach naszych notatników – zaczynamy dostrzegać zarys pierwotnego piękna i  symetrii, które panowały w  pierwszych chwilach istnienia Wszechświata. Już prawie je dostrzegamy, choć obraz nie jest jeszcze wyraźny. Czujemy, że coś utrudnia nam widzenie – jakaś nieznana siła, która zamazuje i  skrywa wewnętrzną prostotę naszego świata.''

 

http://www.wiw.pl/fizyka/boskaczastka/Esej.asp?base=r&cp=1&ce=0

[/td][/tr][/table]

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mój kolega fizyk, spec od laserów, uważa że w LHC bozonu Higgsa nie znajdą. Wprowadził mnie w małą konsternację, bo to zdolny naukowiec jest.

 

Problem powstania Wszechświata dawno juz został rozwiązany tu na KW i to wielokrotnie. Nie wiem po co oni zbudowali to LHC przecież mogli sie zapytać nas. Taniej i szybciej.

:P  :)  ;)

z akcentem na: wielokrotnie  :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mój kolega fizyk, spec od laserów, uważa że w LHC bozonu Higgsa nie znajdą. Wprowadził mnie w małą konsternację, bo to zdolny naukowiec jest...

Właśnie, chyba ma rację bo problem jest w rzedach energii - ciągle jakby o kilka za mało:(

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Głównym powodem wybudowania Wielkiego Zderzacza Hadronów (LHC) były poszukiwania bozonu Higgsa. Urządzenie wywiązało się z tego zadania w 2012 roku i od tej pory poszerza naszą wiedzę o świecie. Teraz naukowcy z eksperymentów CMS i ATLAS w CERN poinformowali o znalezieniu pierwszych dowodów na rzadki rozpad bozonu Higgsa do bozonu Z i fotonu. Jeśli ich spostrzeżenia się potwierdzą, może być to pośrednim dowodem na istnienia cząstek spoza Modelu Standardowego.
      Model Standardowy przewiduje, że jeśli bozon Higgsa ma masę ok. 125 gigaelektronowoltów – a z ostatnich badań wiemy, że wynosi ona 125,35 GeV – to w około 0,15% przypadków powinien się on rozpadać na bozon Z – elektrycznie obojętny nośnik oddziaływań słabych – oraz foton, nośnik oddziaływań elektromagnetycznych. Niektóre teorie uzupełniające Model Standardowy przewidują inną częstotliwość dla takiego rozpadu. Zatem sprawdzenie, które z nich są prawdziwe, daje nam ważny wgląd zarówno w samą fizykę spoza Modelu Standardowego, jak i na bozon Higgsa. A mowa jest o fizyce poza Modelem Standardowym, gdyż modele przewidują, że bozon Higgsa nie rozpada się bezpośrednio do bozonu Z i fotonu, ale proces ten przebiega za pośrednictwem pojawiających się i znikających cząstek wirtualnych, które trudno jest wykryć.
      Uczeni z ATLAS i CMS przejrzeli dane z 2. kampanii badawczej LHC z lat 2015–2018 i zdobyli pierwsze dowody na rozpad bozonu Higgsa do bozonu Z i fotonu. Istotność statystyczna odkrycia wynosi sigma 3,4, jest więc mniejsza od sigma 5, kiedy to można mówić o odkryciu. Dlatego też na na razie do uzyskanych wyników należy podchodzić z ostrożnością, wymagają one bowiem weryfikacji.
      Każda cząstka ma specjalny związek z bozonem Higgsa, zatem poszukiwanie rzadkich dróg rozpadu bozonu Higgsa jest priorytetem. Dzięki drobiazgowemu połączeniu i analizie danych z eksperymentów ATLAS i CMS wykonaliśmy krok w kierunku rozwiązania kolejnej zagadki związanej z bozonem Higgsa, mówi Pamela Ferrari z eksperymentu ATLAS. A Florencia Canelli z CMS dodaje, że podczas trwającej właśnie 3. kampanii badawczej LHC oraz High-Luminosity LHC naukowcy będą w stanie doprecyzować obecnie posiadane dane oraz zarejestrować jeszcze rzadsze rodzaje rozpadów Higgsa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj, po trzech latach przerwy, Wielki Zderzacz Hadronów (LHC) ponownie podejmuje badania naukowe. Największy na świecie akcelerator cząstek będzie zderzał protony przy rekordowo wysokiej energii wynoszącej 13,6 teraelektronowoltów (TeV). To trzecia kampania naukowa od czasu uruchomienia LHC.
      Przez trzy ostatnie lata akcelerator był wyłączony. Trwały w nim prace konserwatorskie i rozbudowywano jego możliwości. Od kwietnia w akceleratorze znowu krążą strumienie cząstek, a naukowcy przez ostatnich kilka tygodni sprawdzali i dostrajali sprzęt. Teraz uznali, że wszystko działa, jak należy, uzyskano stabilne strumienie i uznali, że LHC może rozpocząć badania naukowe.
      W ramach rozpoczynającej się właśnie trzeciej kampanii naukowej LHC będzie pracował bez przerwy przez cztery lata. Rekordowo wysoka energia strumieni cząstek pozwoli na uzyskanie bardziej precyzyjnych danych i daje szanse na dokonanie nowych odkryć.
      Szerokość wiązek protonów w miejscu ich kolizji będzie mniejsza niż 10 mikrometrów, co zwiększy liczbę zderzeń, mówi dyrektor akceleratorów i technologii w CERN, Mike Lamont. Uczony przypomina, że gdy podczas 1. kampanii naukowej odkryto bozon Higgsa, LHC pracował przy 12 odwrotnych femtobarnach. Teraz naukowcy chcą osiągnąć 280 odwrotnych femtobarnów. Odwrotny femtobarn to miara liczby zderzeń cząstek, odpowiadająca około 100 bilionom zderzeń proton-proton.
      W czasie przestoju wszystkie cztery główne urządzenia LHC poddano gruntowym remontom oraz udoskonaleniom ich systemów rejestracji i gromadzeniach danych. Dzięki temu mogą obecnie zebrać więcej informacji o wyższej jakości. Dzięki temu ATLAS i CMS powinny zarejestrować w obecnej kampanii więcej kolizji niż podczas dwóch poprzednich kampanii łącznie. Całkowicie przebudowany LHCb będzie zbierał dane 10-krotnie szybciej niż wcześniej, a możliwości gromadzenia danych przez ALICE zwiększono aż 55-krotnie.
      Dzięki tym wszystkim udoskonaleniom można będzie zwiększyć zakres badań prowadzonych za pomocą LHC. Naukowcy będą mogli badać bozon Higgsa z niedostępną wcześniej precyzją, mogą zaobserwować procesy, których wcześniej nie obserwowano, poprawią precyzję pomiarów wielu procesów, które mają fundamentalne znaczenie dla zrozumienia fizyki, asymetrii materii i antymaterii. Można będzie badać właściwości materii w ekstremalnych warunkach temperatury i gęstości, eksperci zyskają nowe możliwości poszukiwania ciemnej materii.
      Fizycy z niecierpliwością czekają na rozpoczęcie badań nad różnicami pomiędzy elektronami a mionami. Z kolei program zderzeń ciężkich jonów pozwoli na precyzyjne badanie plazmy kwarkowo-gluonowej, stanu materii, który istniał przez pierwszych 10 mikrosekund po Wielkim Wybuchu. Będziemy mogli przejść z obserwacji interesujących właściwości plazmy kwarkowo-gluonowej do fazy precyzyjnego opisu tych właściwości i powiązania ich z dynamiką ich części składowych, mówi Luciano Musa, rzecznik prasowy eksperymentu ALICE.
      Udoskonalono nie tylko cztery zasadnicze elementy LHC. Również mniejsze eksperymenty – TOTEM, LHCf, MoEDAL czy niedawno zainstalowane FASER i SND@LHC – pozwolą na badanie zjawisk opisywanych przez Model Standardowy oraz wykraczających poza niego, takich jak monopole magnetyczne, neutrina czy promieniowanie kosmiczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uczeni pracujący przy eksperymencie ATLAS w CERN donieśli o zaobserwowaniu pierwszego przypadku jednoczesnego powstania trzech masywnych bozonów W (produkcja WWW), które pojawiły się w wyniku zderzeń prowadzonych w Wielkim Zderzaczu Hadronów.
      Bozony W, jako nośniki oddziaływań elektrosłabych, odgrywają kluczową rolę w testowaniu Modelu Standardowego. Po raz pierwszy zostały odkryte przed 40 laty i od tamtej pory są przedmiotem badań fizyków.
      Naukowcy z ATLAS przeanalizowali dane zarejestrowane w latach 2015–2018 i oznajmili, że zauważyli produkcję WWW z poziomem ufności rzędu 8,2 sigma. To znacznie powyżej 5 sigma, gdy już można powiedzieć o odkryciu. Osiągnięcie tak dużej pewności nie było łatwe. Naukowcy przeanalizowali około 20 miliardów zderzeń, wśród których zauważyli kilkaset przypadków produkcji WWW.
      Bozon W może rozpadać się na wiele różnych sposobów. Specjaliści skupili się na czterech modelach rozpadu WWW, które dawały największe szanse na odkrycie poszukiwanego zjawiska, gdyż powodują najmniej szumów tła. W trzech z tych modeli dwa bozony W rozpadają się w elektrony lub miony o tym samym ładunku oraz neutrina a trzeci bozon W rozpada się do pary kwarków. W czwartym z modeli wszystkie bozony W rozpadają się w leptony (elektrony lub miony) i neutrino.
      Dzięki odkryciu specjaliści będą mogli poszukać teraz interakcji, które wykraczają poza obecne możliwości LHC. Szczególnie interesująca jest możliwość wykorzystania procesu produkcji WWW do badania zjawiska polegającego na wzajemnym rozpraszaniu się dwóch bozonów W.
      Więcej na temat najnowszego odkrycia w artykule Observation of WWW production in pp collisions at s√=13 TeV with the ATLAS detector [PDF].

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z całego świata będą po raz drugi debatować nad przyszłością nowego kierunku badań w Wielkim Zderzaczu Hadronów pod Genewą, który ma zaowocować szczegółowymi pomiarami wysokoenegetycznych neutrin oraz otworzy nowe drogi poszukiwań ciemnej materii. Współautorem dyskutowanej propozycji nowego eksperymentu FLArE jest dr Sebastian Trojanowski z AstroCeNT i Zakładu Fizyki Teoretycznej NCBJ.
      Planowane ponowne uruchomienie Wielkiego Zderzacza Hadronów jest jednym z najbardziej wyczekiwanych wydarzeń w świecie fizyki. Przy tej okazji, zostanie również zainicjowany nowy kierunek badań w LHC, obejmujący pomiary wysokoenergetycznych neutrin oraz poszukiwania śladów nowej fizyki w kierunku wzdłuż osi wiązki zderzenia protonów. Ten nietypowy sposób wykorzystania zderzacza został zaproponowany przez autorów koncepcji detektora FASER (odnośniki w uzupełnieniu). Jednym z jego pomysłodawców był dr Sebastian Trojanowski związany z ośrodkiem badawczym AstroCeNT przy Centrum Astronomicznym im. Mikołaja Kopernika PAN oraz z Narodowym Centrum Badań Jądrowych.
      Choć eksperyment FASER ma dopiero zacząć zbierać dane w najbliższym czasie, to już zadajemy sobie pytanie, jak rozwinąć ten pomysł do jeszcze ambitniejszego projektu w dalszej przyszłości – mówi dr Trojanowski. Dyskusje na ten temat zgromadzą w dniach 27-28 maja (w formule zdalnej) około 100 badaczy z całego świata zajmujących się fizyką cząstek elementarnych. Na spotkaniu inżynierowie z CERN zaprezentują również wstępne plany dotyczące budowy nowego laboratorium podziemnego, które mogłoby pomieścić większą liczbę eksperymentów skupionych wzdłuż osi wiązki zderzenia. Jest to projekt długofalowy, który ma na celu maksymalizację potencjału badawczego obecnego zderzacza, który powinien służyć nauce jeszcze wiele lat.
      Wśród kilku eksperymentów proponowanych do umieszczenia w nowym laboratorium jest m.in. bezpośredni spadkobierca detektora FASER. Eksperyment, nazwany roboczo FASER 2, znacząco poszerzyłby potencjał odkrywczy obecnego detektora. Choć ani obecny, ani proponowany przyszły eksperyment nie dają możliwości bezpośredniej obserwacji ciemnej materii, to umożliwiają one poszukiwanie postulowanych teoretycznie niestabilnych cząstek, które mogą pośredniczyć w jej oddziaływaniach.
      O krok dalej idą autorzy kwietniowego artykułu opublikowanego w czasopiśmie Physical Review D, prof. Brian Batell z Uniwersytetu w Pittsburgu w USA, prof. Jonathan Feng z Uniwersytetu Kalifornijskiego w Irvine oraz dr Trojanowski. Proponują oni sposób na bezpośrednią obserwację lekkich cząstek ciemnej materii w nowym laboratorium. W tym celu sugerują umieszczenie tam nowego detektora, nazwanego FLArE (ang. Forward Liquid Argon Experiment), wykorzystującego technologię ciekło-argonowej komory projekcji czasowej oraz wstępny sygnał w postaci błysku (ang. flare) scyntylacyjnego. Detektor taki byłby nowym narzędziem do bezpośredniego poszukiwania cząstek ciemnej materii poprzez badanie ich oddziaływań przy bardzo wysokich energiach oraz przy laboratoryjnie kontrolowanym strumieniu takich cząstek. Jest to metoda wysoce komplementarna względem obecnych podziemnych eksperymentów poszukujących cząstek pochodzących z kosmosu lub produkowanych przez promieniowanie kosmiczne – argumentuje dr Trojanowski.
      Pomysł na nowy detektor FLArE został błyskawicznie włączony we wstępne plany inżynieryjne nowego laboratorium oraz w dyskusje eksperymentalne, również te dotyczące przyszłych badań neutrin w LHC. Czas pokaże, czy projekt ten będzie kolejnym sukcesem na miarę FASERa, czy też zostanie zastąpiony jeszcze lepszym rozwiązaniem – komentuje dr Trojanowski. Jedno jest pewne: fizycy nie próżnują i nie ustają w wysiłkach w celu lepszego poznania praw rządzących naszym światem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów zainstalowano nowe urządzenie o nazwie FASER (Forward Search Experiment), którego współtwórcą jest dr Sebastian Trojanowski. FASER będzie badał cząstki, co do których naukowcy mają podejrzenie, że wchodzą w interakcje z ciemną materią. Testy nowego urządzenia potrwają do końca roku.
      To krok milowy dla tego eksperymentu. FASER będzie gotowy do zbierania danych z Wielkiego Zderzacza Hadronów, gdy tylko na nowo podejmie on pracę wiosną 2022 roku, mówi profesor Shih-Chieh hsu z University of Washington, który pracuje przy FASER.
      Eksperyment będzie badał interakcje z wysokoenergetycznymi neutrinami i poszukiwał nowych lekkich słabo oddziałujących cząstek, które mogą wchodzić w interakacje z ciemną materią. Stanowi ona około 85% materii we wszechświecie. Zbadanie cząstek, które mogą z nią oddziaływać, pozwoli na określenie właściwości ciemnej materii.
      W pracach eksperymentu FASER bierze udział 70 naukowców z 19 instytucji w 8 krajach.
      Naukowcy sądzą, że podczas kolizji w Wielkim Zderzaczu Hadronów powstają słabo reagujące cząstki, które FASER będzie w stanie wykryć. Jak informowaliśmy przed dwoma laty, w LHC mogą powstawać też niewykryte dotąd ciężkie cząstki.
      FASER został umieszczony w nieużywanym tunelu serwisowym znajdującym się 480 metrów od wykrywacza ATLAS. Dzięki niewielkiej odległości FASER powinien być w stanie wykryć produkty rozpadu lekkich cząstek. Urządzenie ma 5 metrów długości, a na jego początku znajdują się dwie sekcje scyntylatorów. Będą one odpowiedzialne za usuwanie interferencji powodowanej przez naładowane cząstki. Za scyntylatorami umieszczono 1,5-metrowy magnes dipolowy, za którym znajduje się spektrometr, składający się z dwóch 1-metowych magnesów dipolowych. Na końcu, początku i pomiędzy magnesami znajdują się 3 urządzenia rejestrujące zbudowane z krzemowych detektorów. Na początku i końcu spektrometru znajdują się dodatkowe stacje scyntylatorów. Ostatnim elementem jest elektromagnetyczny kalorymetr. Będzie on identyfikował wysokoenergetyczne elektrony i fotony oraz mierzył całą energię elektromagnetyczną.
      Całość jest schłodzona do temperatury 15 stopni Celsjusza przez własny system chłodzenia. Niektóre z elementów FASERA zostały zbudowane z zapasowych części innych urządzeń LHC.
      FASER zostanie też wyposażony w dodatkowy detektor FASERv, wyspecjalizowany w wykrywaniu neutrin. Powinien być on gotowy do instalacji pod koniec bieżącego roku.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...