Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wielki Zderzacz Hadronów rozpoczyna pracę z rekordowo wysoką energią

Recommended Posts

Dzisiaj, po trzech latach przerwy, Wielki Zderzacz Hadronów (LHC) ponownie podejmuje badania naukowe. Największy na świecie akcelerator cząstek będzie zderzał protony przy rekordowo wysokiej energii wynoszącej 13,6 teraelektronowoltów (TeV). To trzecia kampania naukowa od czasu uruchomienia LHC.

Przez trzy ostatnie lata akcelerator był wyłączony. Trwały w nim prace konserwatorskie i rozbudowywano jego możliwości. Od kwietnia w akceleratorze znowu krążą strumienie cząstek, a naukowcy przez ostatnich kilka tygodni sprawdzali i dostrajali sprzęt. Teraz uznali, że wszystko działa, jak należy, uzyskano stabilne strumienie i uznali, że LHC może rozpocząć badania naukowe.
W ramach rozpoczynającej się właśnie trzeciej kampanii naukowej LHC będzie pracował bez przerwy przez cztery lata. Rekordowo wysoka energia strumieni cząstek pozwoli na uzyskanie bardziej precyzyjnych danych i daje szanse na dokonanie nowych odkryć.

Szerokość wiązek protonów w miejscu ich kolizji będzie mniejsza niż 10 mikrometrów, co zwiększy liczbę zderzeń, mówi dyrektor akceleratorów i technologii w CERN, Mike Lamont. Uczony przypomina, że gdy podczas 1. kampanii naukowej odkryto bozon Higgsa, LHC pracował przy 12 odwrotnych femtobarnach. Teraz naukowcy chcą osiągnąć 280 odwrotnych femtobarnów. Odwrotny femtobarn to miara liczby zderzeń cząstek, odpowiadająca około 100 bilionom zderzeń proton-proton.

W czasie przestoju wszystkie cztery główne urządzenia LHC poddano gruntowym remontom oraz udoskonaleniom ich systemów rejestracji i gromadzeniach danych. Dzięki temu mogą obecnie zebrać więcej informacji o wyższej jakości. Dzięki temu ATLAS i CMS powinny zarejestrować w obecnej kampanii więcej kolizji niż podczas dwóch poprzednich kampanii łącznie. Całkowicie przebudowany LHCb będzie zbierał dane 10-krotnie szybciej niż wcześniej, a możliwości gromadzenia danych przez ALICE zwiększono aż 55-krotnie.

Dzięki tym wszystkim udoskonaleniom można będzie zwiększyć zakres badań prowadzonych za pomocą LHC. Naukowcy będą mogli badać bozon Higgsa z niedostępną wcześniej precyzją, mogą zaobserwować procesy, których wcześniej nie obserwowano, poprawią precyzję pomiarów wielu procesów, które mają fundamentalne znaczenie dla zrozumienia fizyki, asymetrii materii i antymaterii. Można będzie badać właściwości materii w ekstremalnych warunkach temperatury i gęstości, eksperci zyskają nowe możliwości poszukiwania ciemnej materii.

Fizycy z niecierpliwością czekają na rozpoczęcie badań nad różnicami pomiędzy elektronami a mionami. Z kolei program zderzeń ciężkich jonów pozwoli na precyzyjne badanie plazmy kwarkowo-gluonowej, stanu materii, który istniał przez pierwszych 10 mikrosekund po Wielkim Wybuchu. Będziemy mogli przejść z obserwacji interesujących właściwości plazmy kwarkowo-gluonowej do fazy precyzyjnego opisu tych właściwości i powiązania ich z dynamiką ich części składowych, mówi Luciano Musa, rzecznik prasowy eksperymentu ALICE.

Udoskonalono nie tylko cztery zasadnicze elementy LHC. Również mniejsze eksperymenty – TOTEM, LHCf, MoEDAL czy niedawno zainstalowane FASER i SND@LHC – pozwolą na badanie zjawisk opisywanych przez Model Standardowy oraz wykraczających poza niego, takich jak monopole magnetyczne, neutrina czy promieniowanie kosmiczne.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielki Zderzacz Hadronów, a dokładniej jeden z jego mniejszych eksperymentów – LHCb – zarejestrował nowy rodzaj pentakwarka oraz nigdy wcześniej nie widzianą parę tetrakwarków, w skład której wchodzi nowy typ tetrakwarka. Tym samym rodzina hadronów powiększyła się o trzech egzotycznych członków.
      Kwarki to cząstki elementarne. Zwykle kwarki łączą się w grupy po dwa lub trzy, tworząc hadrony. Z trzech kwarków składają się np. protony i neutrony tworzące jądro atomu. Czasem jednak kwarki łączą się w grupy po cztery czy pięć, wówczas mówimy o tetra- i pentakwarkach. ich istnienie przewidziano teoretycznie w tym samym czasie, co istnienie „zwykłych” hadronów. Jednak tetra- i pentakwarki obserwujemy dopiero od początku obecnego wieku.
      Większość odkrytych tetra- i pentakwarków zawiera kwark powabny i antykwark powabny, a pozostałe kwarki to kwark górny, dolny, dziwny lub ich antycząstki. Jednak w ciągu ostatnich lat naukowcy przy LHCb zaczęli rejestrować inne rodzaje egzotycznych hadronów.
      Tak jest i tym razem. Uczeni z LHCb poinformowali właśnie, że podczas rozpadu mezonów B o ładunku ujemnym, zarejestrowano pentakwarka złożonego z kwarka powabnego, antykwarka powabnego oraz kwarków górnego, dolnego i dziwnego. To pierwszy znany pentakwark zawierający kwark dziwny. Poziom ufności (σ) wynosi w przypadku tej obserwacji wynosi 15, czyli znacznie więcej niż sigma 5 przy którym fizycy mówią o odkryciu nowej cząstki.
      Drugie odkrycie to podwójnie naładowany tetrakwark o otwartym powabie, składający się z kwarka powabnego, antykwarka dziwnego, kwarka górnego i antykwarka dolnego. Towarzyszył mu neutralny tetrakwark. W przypadku tetrakwarka podwójnie naładowanego σ=6,5, a w przypadku jego towarzysza jest to 8, więc w obu przypadkach możemy mówić o odkryciu. To pierwszy raz, gdy odkryto parę tetrakwarków.
      Im więcej badań przeprowadzamy, tym więcej odkrywamy egzotycznych hadronów. To podobna sytuacja jak w latach 50. ubiegłego wieku, gdy naukowcy trafili na całe „zoo cząstek”, dzięki czemu w latach 60. mogli stworzyć kwarkowy model hadronów. Teraz tworzymy „zoo cząstek 2.0”" – powiedział koordynator projektu LHCb Niels Tuning.
      Obecnie niektóre modele teoretyczne opisują egzotyczne hadrony jako pojedyncze cząstki składające się ze ściśle powiązanych ze sobą kwarków. Natomiast według innych modeli są to pary luźno powiązanych standardowych hadronów, tworzących struktury podobne do molekuł. Dopiero kolejne badania pozwolą odpowiedzieć na pytanie, czym naprawdę są egzotyczne hadrony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek.
      Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda.
      Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych.
      Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda.
      Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona.
      Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego.
      Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół europejskich, w tym polskich, fizyków poinformował o ustanowieniu rekordu energetycznego z syntezy termojądrowej. Specjaliści pracujący przy tokamaku Joint European Torus (JET) w Wielkiej Brytanii uzyskali 59 megadżuli trwałej energii z fuzji jądrowej. Wyniki są zgodne z oczekiwaniami, potwierdzają słuszność decyzji o budowie reaktora ITER i dowodzą, że fuzja może być wydajnym, bezpiecznym i niskoemisyjnym źródłem energii.
      Osiągnięcie to jest wynikiem wieloletnich przygotowań zespołu naukowców EUROfusion z całej Europy. Sam rekord, a co ważniejsze, to czego nauczyliśmy się o fuzji w tych warunkach i jak to całkowicie potwierdza nasze przewidywania, pokazuje, że obraliśmy właściwą drogę, by ziścił się świat funkcjonujący w oparciu o energię z syntezy jądrowej. Jeśli jesteśmy w stanie kontrolować fuzję przez pięć sekund, możemy to robić przez pięć minut, a następnie przez pięć dni, w miarę zwiększania skali funkcjonowania urządzeń w przyszłości, powiedział Tony Donné, menedżer programu EUROfusion, w którego pracach udział bierze 4800 ekspertów i studentów z całego świata. A Bernard Bigot, dyrektor ITER, dodał, że stabilne wyładowanie deuteru z trytem na tym poziomie energetycznym, prawie na skalę przemysłową, potwierdza sens działania wszystkich zaangażowanych w fuzję na świecie. W przypadku projektu ITER wyniki JET pozwalają nam zakładać, że jesteśmy na dobrej drodze do zademonstrowania mocy syntezy jądrowej.
      JET znajduje się w Culham w Wielkiej Brytanii. Został uruchomiony w 1977 roku jako przedsięwzięcie Wspólnoty Europejskiej. Prowadzone w nim badania są niezbędne do rozwoju ITER i innych elektrowni termojądrowych. JET to jedyny tokamak na świecie, w którym można zastosować taką samą mieszankę deutery i trytu (D-T), jaka będzie stosowana w ITER i elektrowniach przyszłości. Temperatura osiągana w JET jest 10-krotnie wyższa niż wewnątrz Słońca. Teraz udało się tam uzyskać również olbrzymią ilość energii. Podczas 5-sekundowego wyładowania plazmy uwolniło się 59 megadżuli energii w postaci ciepła. Tym samym JET utrzymał moc wyjściową nieco ponad 11 MW ciepła uśrednioną w ciągu pięciu sekund. Poprzedni rekord, 22 megadżule energii całkowitej, oznaczał 4,4 MW uśrednione w ciągu pięciu sekund.
      Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówiła w ubiegłym roku profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
      Badania nad fuzją jądrową prowadzone są na całym świecie i przywiązuje się do nich coraz większą wagę. W bieżącym roku w Wielkiej Brytanii zostanie wybrana lokalizacja dla przyszłej prototypowej elektrowni fuzyjnej, Chińczycy poinformowali o pobiciu rekordu utrzymania wysokotemperaturowej plazmy w tokamaku, prestiżowy MIT twierdzi, że już za 4 lata może powstać pierwszy reaktor fuzyjny z zyskiem energetycznym netto, a z niedawno opublikowanego raportu dowiadujemy się, że na świecie istnieje co najmniej 35 przedsiębiorstw pracujących nad fuzją jądrową. Mimo tego perspektywa powstania pierwsze komercyjnej elektrowni fuzyjnej wydaje się bardzo odległa. To raczej perspektywa dekad niż lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele ludzkich działań niesie ze sobą zewnętrzne koszty społeczne, środowiskowe czy zdrowotne. Gdy np. jedziemy samochodem, musimy zapłacić za paliwo, jednak cena paliwa nie uwzględnia kosztu zanieczyszczenia środowiska czy negatywnego wpływu spalin na ludzkie zdrowie. Naukowcy z brytyjskiego University of Sussex i koreańskiego Hanyang University podjęli się globalnego oszacowania kosztów zewnętrznych związanych z działalnością sektora transportowego i energetycznego. Okazało się, że koszty te wynoszą ponad 1/4 światowego produktu brutto.
      Z analizy przeprowadzonej przez profesorów Benjamina K. Sovacoola i Jinsoo Kima, wynika, że zewnętrzne koszty społeczne, zdrowotne i środowiskowe obu wspomnianych sektorów to 24,662 biliony USD, czyli około 29% światowego produktu brutto.
      Badania opublikowane na łamach pisma Energy Research & Social Science wykazały, że gdyby uwzględnić wszystkie koszty powodowane przez wykorzystywanie węgla – takie jak zmiana klimatu, zanieczyszczenie powietrza czy degradacja gleb – to cena węgla powinna być ponaddwukrotnie wyższa, niż jest obecnie.
      Autorzy badań podkreślają, że obecny system energetyczny nie sprawdza się pod względem rynkowym. Gdyby bowiem uwzględnić rzeczywiste koszty produkcji energii, to okazałoby się, że nieuwzględniane koszty są niemal równe obecnym kosztom produkcji, przez co wiele elektrowni węglowych i atomowych byłoby nieopłacalnych. Naukowcy przypominają przy tym, że również systemy produkcji energii odnawialnej niosą ze sobą koszty zewnętrzne.
      Podczas badań zidentyfikowaliśmy olbrzymie koszty zewnętrzne, które niemal nigdy nie są uwzględniane w rzeczywistych wydatkach związanych z jazdą samochodem czy użytkowaniem elektrowni węglowej. Uwzględnienie tych kosztów doprowadziłoby do radykalnej zmiany szacunków ekonomicznych i portfolio zasobów, na których polegają dostawcy energii, mówi profesor Sovacool.
      To nie jest tak, że społeczeństwo nie płaci tych kosztów. Po prostu koszty te nie są uwzględniane w cenie energii. I, niestety, te koszty zewnętrzne nie są ponoszone ani równo, ani uczciwie. Najbardziej poszkodowani są ci najsłabiej reprezentowani na rynku. To na przykład ludzie żyjący na obszarach o najbardziej zanieczyszczonym powietrzu, glebie i wodzie, których nie stać na przeprowadzkę w inne regiony czy mieszkańcy wysp ledwie wystających nad poziom morza, jak Vanuatu czy Malediwy, którzy już teraz są zagrożeni przez wzrost poziomu wód oceanicznych.
      Profesor Jinsoo Kim dodaje, że badania jasno pokazują, iż ropa naftowa, węgiel i związane z nimi odpady generują znacznie więcej kosztów w portfolio firm energetycznych niż inne metody produkcji energii. Gdyby prawdziwe koszty wykorzystywania paliw kopalnych były uwzględniane, to wielkie ponadnarodowe koncerny energetyczne, które dominują na światowym rynku, przynosiłyby olbrzymie straty. Jednak zamiast tego rachunek wystawiany jest społeczeństwom, które ponoszą te koszty.
      Na potrzeby swoich badań uczeni wykonali metaanalizę i syntezę 139 badań naukowych, w których dokonano w sumie 704 szacunków kosztów zewnętrznych. Były to 83 badania dotyczące dostarczania energii, 13 badań nad efektywnością energetyczną i 43 badania nad transportem.
      Z przeprowadzonej analizy wynika, że największe koszty zewnętrzne niesie ze sobą produkcja energii z węgla. Wynoszą one aż 14,5 centa na kWh, podczas gdy średni koszt produkcji energii z węgla w czasie całego okres działania elektrowni węglowej wynosi od 6,6 do 15,2 centa/kWh. Drugim pod względem wysokości kosztów zewnętrznych rodzajem pozyskiwania energii jest jej produkcja z gazu ziemnego. Tam koszty zewnętrzne to 3,5 centa/kWh, przy koszcie produkcji wynoszącym 4,4–6,8 centa/kWh.
      To poważne wyzwanie dla polityków, urzędników i planistów, by spowodować, żeby rynki transportowy i energetyczny funkcjonowały ja należy i uwzględniały w cenach swoich produktów biliony dolarów kosztów zewnętrznych, które obecnie przerzucają na społeczeństwo. Obecnie konsumenci są odseparowani od rzeczywistych kosztów pozyskiwania, transportu i przetwarzania surowców energetycznych oraz pozyskiwania z nich energii. A to oznacza, że kolosalny koszt społeczny i ekologiczny takich działań jest trudniej zauważyć. Zasadnicze pytanie brzmi, czy chcemy globalnych rynków, które manipulują kosztami zewnętrznymi dla własnych korzyści, czy też wolimy politykę, która wymusi na nich zinternalizowanie tych kosztów – stwierdza Sovacool.
      Autorzy badań zwracają uwagę, że w wielu pakietach pomocowych, które mają rozruszać gospodarkę po pandemii uwzględniono olbrzymie kwoty dla przemysłu paliw kopalnych, motoryzacyjnego czy lotniczego. Jednak długotrwałe ożywienie gospodarcze może się nie udać, jeśli sektory te nie będą ponosiły całości kosztów, jakie są związane z ich działalnością, dodaje profesor Kim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Autorzy artykułu opublikowanego w Americal Journal of Clinical Nutrition podważają powszechnie panujące przekonanie, że to nadmierna ilość spożywanego jedzenia prowadzi do otyłości. Ich zdaniem model bilansu energetycznego, zgodnie z którym nadwaga i otyłość pojawiają się, gdy pobieramy więcej energii niż wydatkujemy, zawiera liczne błędy. Proponują stosowanie modelu węglowodanowo-insulinowego, zgodnie z którym nadwagę i otyłość powoduje to, co jemy, a nie ile jemy.
      Zgodnie ze stosowanym obecnie modelem bilansu energetycznego zachęca się do spożywania mniejszych ilości pokarmów i większej aktywności fizycznej. Jednak działania takie nie przynoszą skutku, a osób z nadwagą i otyłych jest coraz więcej. Jak mówią autorzy wspomnianego artykułu, model bilansu energetycznego bierze pod uwagę podstawy fizyki, bez uwzględniania biologicznych mechanizmów prowadzących do przybierania na wadze. Dlatego też zaproponowali model węglowodanowo-insulinowy, zgodnie z którym ważniejsze jest to co jemy, a nie ile jemy. Ich zdaniem bowiem epidemia otyłości spowodowana jest częściowo przez hormonalną reakcję na zmianę jakości pożywienia, a w szczególności na obecność w dużych ilości cukru i wysoki indeks glikemiczny pokarmów, co prowadzi do zmian w metabolizmie.
      Wszędzie otacza nas wysoko przetworzona, smaczna żywność, która jest do tego intensywnie reklamowana. W tej sytuacji łatwo przyjmować więcej kalorii niż się potrzebuje, a na nierównowagę energetyczną wpływ ma też siedzący tryb życia. Zgodnie z tą filozofią przyjmowanie zbyt dużych ilości pożywienia w połączeniu z brakiem aktywności fizycznej prowadzi do nadwagi. Problem jednak w tym, że pomimo kampanii informacyjnych zachęcających do jedzenia mniej i ćwiczenia więcej, epidemia otyłości zatacza coraz szersze kręgi.
      Główny autor artykułu The Carbohydrate-Insulin Model: A Physiological Perspective on the Obesity Pandemic doktor David Ludwig z Boston Children's Hospital i Harvard Medical School mówi, że model bilansu energetycznego nie uwzględnia biologicznych przyczyn przybierania na wadze. Weźmy na przykład pod uwagę okres szybkiego wzrostu nastolatków. W tym czasie młodzi ludzie mogą zwiększyć spożywaną liczbę kalorii o 1000 dziennie. Ale czy to ta zwiększona ilość kalorii powoduje, że rosną czy też nagły wzrost powoduje, że są głodni i się przejadają?, zwraca uwagę Ludwig.
      Model węglowodanowo-insulinowy zakłada, że przyczyną nadwagi jest to co jemy, a nie ile jemy. Zgodnie z nim przyczyną współczesnej epidemii otyłości są współczesne nawyki żywieniowe, które powodują, że jemy bardzo dużo pokarmów o wysokim indeksie glikemicznym, szczególnie zaś wysoko przetworzonych, łatwych do strawienia węglowodanów. Taka żywność prowadzi do zmian w naszym metabolizmie, których wynikiem jest odkładanie się tłuszczu i przybieranie na wadze.
      Gdy spożywamy wysoko przetworzone węglowodany nasz organizm zwiększa wydzielanie insuliny, a zmniejsza wydzielanie glukagonu. To zaś powoduje, że komórki tłuszczowe dostają polecenie przechowywania większej ilości kalorii. A skoro więcej energii jest odkładane, to mięśnie i inne aktywne tkanki otrzymują mniej kalorii. Mózg zauważa więc, że ciało nie dostaje wystarczającej ilości energii i generuje sygnały, przez które czujemy się głodni. Jakby jeszcze tego było mało, gdy organizm próbuje przechowywać energię, metabolizm może zwalniać. W ten sposób możemy czuć się głodni, mimo że w naszym organizmie ciągle odkłada się tłuszcz.
      Dlatego też powinniśmy brać pod uwagę nie tylko to, ile jemy, ale również co jemy oraz jak żywność wpływa na hormony i metabolizm. Zdaniem Ludwiga, poważny błąd modelu bilansu energetycznego polega na tym, że traktuje on wszystkie kalorie tak samo, niezależnie od źródła, z jakiego je przyjmujemy.
      Model węglowodanowo-insulinowy jest znany nauce od 100 lat. Artykuł opublikowany na łamach The American Journal of Clinical Nutrition jest jego najbardziej wszechstronną analizą. W jej opracowaniu wzięło udział 17 ekspertów z USA, Danii oraz Kanady. Podsumowali oni dziesiątków prac naukowych wspierających model węglowodanowo-insulinowy. Na tej podstawie uważają, że w ramach polityki prozdrowotnej należy zwracać uwagę przede wszystkim na to, co jemy.
      Zmniejszenie ilości łatwych do strawienia węglowodanów, które zalały sieci spożywcze w obecnej epoce mody na dietę niskotłuszczową, pozytywnie wpłynie na biologiczne mechanizmy gromadzenia się tłuszczu w organizmie. Dzięki temu ludzie mogą tracić na wadze czując się przy tym mniej głodni, a chudnięcie będzie dla nich łatwiejsze, stwierdza Ludwig.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...