Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Odkryto nowy mitochondrialny mechanizm kontrolny
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy opisali nową jednostkę chorobową u ptaków. Plastikoza jest powodowana przez niewielkie kawałki plastiku, które wywołują stan zapalny w przewodzie pokarmowym. Została opisana u ptaków morskich, ale odkrywcy nie wykluczają, że to tylko wierzchołek góry lodowej. Na zewnątrz ptaki te wyglądają na zdrowe, jednak nie jest z nimi dobrze, mówi doktor Alex Bond z Muzeum Historii Naturalnej w Londynie. Ciągły stan zapalny prowadzi do bliznowacenia i deformacji tkanki, co negatywnie wpływa na rozwój i szanse przeżycia ptaków.
To pierwsze przeprowadzone w ten sposób badania. Wykazały one, że spożywanie plastiku może poważnie uszkodzić przewód pokarmowy ptaków, dodaje uczony. Chorobę zidentyfikowano dotychczas u jednego gatunku, burzyka bladodziobego. Biorąc jednak pod uwagę stopień zanieczyszczenia środowiska naturalnego plastikiem, nie można wykluczyć, że dotyka ona też innych gatunków.
Autorzy badań opisanych na łamach Journal of Hazardous Materials przez ponad 10 lat badali ptaki na wyspie Lord Howe. Zauważyli, że przebywające tam burzyki są najbardziej zanieczyszczonymi plastikiem ptakami na planecie. Zjadają plastik unoszący się na powierzchni wody, myląc go z pożywieniem. Naukowcy postanowili bliżej się temu przyjrzeć. W ten sposób odkryli nową jednostkę chorobową powodującą zwłóknienia tkanki i na wzór podobnych chorób – jak azbestoza – nadali jej nazwę plastikozy.
Choroba ta, wywoływana przez ciągły stan zapalny spowodowany obecnością kawałków plastiku, prowadzi do formowania nadmiernego bliznowacenia i włóknienia tkanki, co zmniejsza jej elastyczność i prowadzi do zmiany struktury. Okazało się, że wśród burzyków na Lord Howe takie zwłóknienie żołądka gruczołowego jest czymś powszechnym. Dlatego też uznano to za nową jednostkę chorobową.
Bliznowacenie tkanki narusza strukturę fizyczną żołądka gruczołowego. W miarę zwiększania się ekspozycji na plastik, tkanka poddana jest coraz poważniejszemu stanowi zapalnemu, aż do wystąpienia poważnych uszkodzeń. Dobrym przykładem plastikozy jest jej wpływ na gruczoły wydzielające soki trawienne. W miarę, jak ptak połyka kolejne kawałki plastiku, funkcje tych gruczołów ulegają coraz większemu upośledzeniu, aż w końcu dochodzi do całkowitej utraty struktury tkanki, mówi Bond. W wyniku utraty tych gruczołów, ptaki są bardziej podatne na infekcje oraz pasożyty, dochodzi również do zmniejszenie wchłaniania witamin.
Bliznowacenie powoduje też, że żołądek staje się twardszy i sztywniejszy, co upośledza trawienie. Jest to szczególnie niebezpieczne dla piskląt i młodych ptaków, które mają mniejsze żołądki. Obecność plastiku zauważono w odchodach aż 90% młodych karmionych jeszcze przez rodziców. W ekstremalnych przypadkach prowadzi to do śmierci głodowej ptaka, którego żołądek zostaje całkowicie zapchany plastikiem. Plastikoza może mieć też wpływ na rozwój ptaków. Zauważono bowiem, że długość skrzydeł ptaków oraz waga zwierząt jest skorelowana z ilością plastiku w organizmach.
Ptaki w sposób naturalny spożywają materię nieorganiczną, na przykład kamyki. Jednak naukowcy nie zauważyli, by prowadziło to do bliznowacenia w układzie pokarmowym. Za to obecnie w żołądku kamyki mogą rozbijać plastik na mniejsze kawałki, przez co jest on jeszcze bardziej niebezpieczny dla ptaków.
Bond i jego zespół już wcześniej znaleźli mikroplastik w nerkach i śledzionie ptaków, gdzie również wywoływał stany zapalne, włóknienie i utratę struktury tkanki. Nie można wykluczyć, że w podobny sposób plastik wpływa na wiele innych gatunków zwierząt.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szybką i bezbłędną klasyfikację białek, wykrywanie w nich miejsc wiążących potencjalne leki, identyfikowanie białek występujących na powierzchni wirusów, a także badania np. RNA, umożliwia nowe narzędzie bioinformatyczne opracowane przez naukowców z Wydziału Biologii UW.
BioS2Net, czyli Biological Sequence and Structure Network, jest zaawansowanym algorytmem wykorzystującym uczenie maszynowe, pozwalającym na klasyfikację nowo poznanych białek nie tylko na podstawie podobieństwa sekwencji aminokwasowych, ale także ich struktury przestrzennej. Publikacja na jego temat ukazała się na łamach pisma International Journal of Molecular Sciences.
Narzędzie opracował zespół kierowany przez dr. Takao Ishikawę z Zakładu Biologii Molekularnej Wydziału Biologii UW we współpracy z naukowcem z Wydziału Matematyki, Informatyki i Mechaniki UW. Jak mówią sami autorzy, jego głównym zastosowaniem jest usprawniona klasyfikacja białek, ponieważ obecnie stosowany system klasyfikacji strukturalnej opiera się na żmudnej pracy polegającej na porównywaniu struktur nowych białek do tych już skategoryzowanych.
Istnieje co prawda jego zautomatyzowany odpowiednik, jednak jest on bardzo restrykcyjny i bierze pod uwagę wyłącznie podobieństwo sekwencji białek, całkowicie pomijając ich strukturę. Takie narzędzie jak BioS2Net potencjalnie ma szansę znacząco usprawnić cały proces – wyjaśnia dr Ishikawa. Dodatkowo opracowana przez nas architektura może zostać użyta (po niewielkich przeróbkach) do innych zadań, niekoniecznie związanych z klasyfikacją. Przykładowo można by jej użyć do wykrywania w białku miejsc wiążących potencjalne leki lub do identyfikacji białek występujących na powierzchni wirusów.
Można sobie np. wyobrazić sytuację, w której dotychczas zaklasyfikowane do innych grup białka, dzięki zastosowaniu BioS2Net zostaną skategoryzowane jako bardzo podobne do siebie pod względem budowy powierzchni, mimo innego zwinięcia łańcucha białkowego wewnątrz struktury. I wówczas niewykluczone, że cząsteczka oddziałująca z jednym białkiem (np. jako lek) okaże się także skutecznym interaktorem dla drugiego – wymienia dalsze potencjalne zastosowania praktyczne narzędzia dr Ishikawa. Innym ciekawym zastosowaniem mogłoby być np. wykrywanie miejsc wiążących w białkach, które mogą stanowić albo cel dla leków, albo punkt interakcji z białkiem wirusowym.
Działanie BioS2Net opiera się na wykonywanych po sobie operacjach matematycznych, które bazują na danych o konkretnym białku. Do pracy narzędzie potrzebuje tychże danych (im więcej, tym lepiej), odpowiedniego oprogramowania zdolnego do wykonywania skomplikowanych obliczeń związanych z treningiem sieci neuronowej oraz sporej ilości czasu.
W efekcie BioS2Net tworzy unikatową reprezentację każdego białka w postaci wektora o stałym rozmiarze. Można to porównać do czegoś w rodzaju kodu kreskowego opisującego każde z poznanych białek – tłumaczy dr Ishikawa. Narzędzie świetnie nadaje się do klasyfikacji białek na podstawie sekwencji aminokwasowej oraz struktury przestrzennej. Szczególnie istotne jest to, że można dzięki niemu wykryć białka o podobnej strukturze trójwymiarowej, ale o odmiennym „foldzie”, czyli innym sposobie zwinięcia łańcucha białkowego.
Dotychczas stosowane metody przydzielałyby takie białka do osobnych grup. Tymczasem znane są przypadki, gdy tego typu cząsteczki pełnią podobne funkcje. I do wykrywania takich grup białek może się przydać BioS2Net – dodaje.
Jak mówi naukowiec, nowe białka odkrywa się cały czas. Zdecydowana większość z nich, jeśli już ma opisaną strukturę przestrzenną, jest deponowana w bazie danych Protein Data Bank, do której każdy ma dostęp przez Internet. Warto jednak zwrócić uwagę, że proces odkrywania nowych białek rozpoczyna się o wiele wcześniej, już na etapie sekwencjonowania genomu. W bazach danych genomów często można spotkać się z adnotacją ’hypothetical protein’ (pol. hipotetyczne białko). Istnieją algorytmy komputerowe, które na podstawie sekwencji nukleotydowych w zsekwencjonowanym genomie przewidują obszary przypominające geny, które potencjalnie kodują informację o białkach. I takich potencjalnych białek znamy bardzo wiele. Ich funkcje można częściowo przewidzieć na podstawie podobieństwa do cząsteczek już wcześniej opisanych, ale do pełnego poznania takiej roli i mechanizmu działania często jednak należy najpierw ustalić ich strukturę, co wymaga miesięcy lub lat eksperymentów – opowiada badacz z UW.
W przypadku białek podobna sekwencja aminokwasów z reguły przekłada się na podobną strukturę. Do niedawna był to wręcz dogmat w biologii strukturalnej. Dzisiaj jednak wiadomo – mówi dr Ishikawa – że wiele białek jest inherentnie nieustrukturyzowanych (IDP; ang. intrinsically disordered protein) albo przynajmniej zwiera w sobie tego typu rejony. Takie białka mogą przyjmować różne struktury w zależności od tego z jakimi innymi białkami w danym momencie oddziałują.
Dodatkowo bardzo istotny jest cały kontekst, w jakim białko ulega pofałdowaniu. Przykładowo, obecność tzw. białek opiekuńczych, czy nawet samo tempo syntetyzowania białka w komórce, może mieć niemały wpływ na ostateczny jego kształt, a zatem też na funkcje. Nie zmienia to jednak faktu, że cechą fundamentalną każdego białka jest jego sekwencja aminokwasowa – podkreśla.
A dlaczego w ogóle poznanie dokładnej budowy cząsteczki białka jest takie ważne? Autor publikacji wyjaśnia, że białka, realizując swoje zadania w komórce, zawsze przyjmują określoną strukturę. Np. jeśli chcemy zaprojektować nowy lek, który będzie oddziaływał z określonym białkiem, to fundamentalne znaczenie ma określenie struktury tego drugiego. W trakcie pandemii SARS-CoV-2 trzeba było np. określić strukturę wirusowego białka S (tzw. kolca) m.in. po to, aby można było zaproponować cząsteczkę swoiście z nim oddziałującą, a przez to zmniejszyć wydajność zakażania komórek człowieka – mówi. Podsumowując: badanie struktury białek ma ogromne znaczenie dla poznania ich funkcji i mechanizmu działania, a także innych cząsteczek z nimi oddziałujących.
Jeśli chodzi o sam BioS2Net, to najpierw należy ściągnąć z bazy danych i przetworzyć informacje o danym białku. Przetwarzanie służy temu, aby wszystkie cechy białka, takie jak współrzędne atomów, rodzaje aminokwasów, profil ewolucyjny itd., zamienić na liczby, które będą zrozumiałe dla komputera. Każdy pojedynczy atom cząsteczki jest opisywany przez kilkadziesiąt liczb, które wyrażają wspomniane cechy.
Następnie liczby te wprowadza się do sieci neuronowej, która analizuje każdy z atomów oraz ich najbliższych sąsiadów, biorąc pod uwagę zarówno ich ułożenie przestrzenne, jak i sekwencyjne. Kolejny etap to łączenie grup atomów w jeden „superatom”, który zawiera w sobie całą wyuczoną lokalną informację. Proces ten powtarza się do momentu aż ów „superatom” będzie zawierał zagregowane informacje o całym białku. To jest nasz kod kreskowy, który wykorzystujemy potem do klasyfikacji białka, używając standardowych sieci neuronowych – zaznacza dr Ishikawa.
Zapytany o dokładność nowego narzędzia biolog wyjaśnia, że jeśli chodzi o wytworzenie unikatowego wektora reprezentującego poszczególne białka, to BioS2Net robi to bezbłędnie, tzn. że każde białko jest reprezentowane w jedyny możliwy sposób i żadna inna cząsteczka nie będzie opisana w taki sam sposób.
Natomiast, gdy zastosowaliśmy BioS2Net do klasyfikacji białek, osiągnęliśmy wynik nawet 95,4 proc. trafności w porównaniu do obowiązującej klasyfikacji wg bazy danych. Oznacza to, że w ponad 95 przypadków na 100 BioS2Net był w stanie prawidłowo przyporządkować białko do danej grupy. Tutaj jednak warto wspomnieć, że ta obowiązująca klasyfikacja opiera się na podobieństwie sekwencji aminokwasowych i pomija informacje strukturalne – tłumaczy autor publikacji.
Naukowcy podkreślają, że poza głównym zastosowaniem, czyli klasyfikacją białek, BioS2Net będzie mógł służyć także do analizowania innych cząsteczek biologicznych, w tym RNA. Uważamy, że narzędzie można by też wykorzystywać do klasyfikacji zupełnie innych danych biologicznych, np. map chromosomów w jądrze komórkowym. Właściwie to nasza architektura może być przydatna wszędzie tam, gdzie jest zdefiniowana struktura i sekwencja – mówią.
Dr Ishikawa dodaje, że BioS2Net powstał w ramach pracy licencjackiej pierwszego autora (jego Alberta Roethla) wykonanej pod kierunkiem. Warto to podkreślić, bo to ważny sygnał, że licencjat niekoniecznie jest pracą dyplomową, którą po prostu trzeba zrobić, ale czymś, co ma potencjał naukowy i może zostać opublikowane w międzynarodowym czasopiśmie – zaznacza naukowiec.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W łódzkim Bionanoparku powstanie laboratorium firmy NapiFeryn Bio Tech. Będzie w nim produkowane białko z rzepaku, które może zrewolucjonizować i rynek spożywczy, i naszą dietę. W działającej już prototypowej linii produkcyjnej powstaje tygodniowo kilka kilogramów izolatu białkowego (>90% białka) i koncentratu białkowo-błonnikowego (ok. 30% białka). Oba te produkty mogą być stosowane jako dodatki do słodyczy, makaronów, sosów, napojów, pieczywa czy wegańskich zamienników mięsa.
Rzepak, w odróżnieniu od soi, uprawiany jest lokalnie – nie trzeba go importować ani zwiększać jego upraw, ponieważ w procesie pozyskiwania białka wykorzystuje się pozostałości po tłoczeniu oleju rzepakowego. Jest to alternatywne rozwiązanie dla białka zwierzęcego, przyjazne naturze – zostawia znacznie mniejszy ślad węglowy, stwierdziła Magdalena Kozłowska, prezes NapiFeryn BioTech. Białko z rzepaku ma doskonałe wartości odżywcze. Jest łatwo trawione i przyswajalne przez ludzki organizm.
Dotychczasową przeszkodą w stosowaniu go w przemyśle spożywczym był jego charakterystyczny, gorzki posmak. Technologia opatentowana przez nas całkowicie ten problem usuwa. Nasze białko jest nie tylko zdrowe, ale też smaczne, mówi Piotr Wnukowski, wiceprezes firmy.
Co prawda produkt jest testowany też przez firmę w eksperymentalnej kuchni, jednak NapiFeryn BioTech nie chce produkować żywności, ale licencjonować swój produkt koncernom spożywczym. Produkty zawierające białko rzepakowe mogą trafić do sklepów już w ciągu 2-3 lat.
Izolat z białka z rzepaku został uznany za produkt bezpieczny i jest dopuszczony przez UE do stosowania w przemyśle spożywczym.Obecnie firma przygotowuje się do zarejestrowania koncentratu błonnikowo-białkowego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.
Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.
Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.
Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.
Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej.
Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata.
Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute.
Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne.
Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu.
W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni.
Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla.
Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.