Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W wielu instytutach badawczych trwają prace nad wykorzystaniem bakterii do budowy komputera, a zatem stworzenia czegoś w rodzaju znanej ze Star Treka rasy Borgów - kolektywnych umysłów składających się z wielu organizmów.

Christopher A. Voigt wraz z kolegami z University of California w San Francisco, zaprezentował w jaki sposób można wykorzystać odpowiednio zmodyfikowane bakterie E.coli do stworzenia prostej maszyny liczącej.

Zespół Voigta najpierw zmodyfikował E.coli tak, by wydzielały dwa rodzaje składników, pierwszy działający jak "1" lub "on", a drugi jak "0" lub "off". Zmodyfikowano też procesy sygnałowe zachodzące w E.coli, zmieniając w ten sposób bakterię w bramkę logiczną.

I tak, na przykład, gdy genetyczny profil bakterii został skonfigurowany tak, by była ona bramką "AND", to po otrzymaniu sygnału "on" od obu sąsiadów, bakteria wyemituje składnik "on". Jeśli zaś była skonfigurowana jako "XOR", wyemituje sygnał "off".

W ten sposób bakterie mogą stać się podzespołami maszyny liczącej.

Myślimy o prądzie elektrycznym jak o czymś, za pomocą czego możemy wykonywać obliczenia. Ale tak naprawdę wszystko może działać jak komputer, koła zębate, rury z wodą czy biologiczne komórki. Tutaj mamy kolonię bakterii, które mogą otrzymywać sygnały chemiczne od sąsiadów i tworzyć bramki logiczne na tej samej zasadzie, jak tworzone są one w krzemie - stwierdził Voigt.

Bakteryjne bramki logiczne są wielokrotnie większe od tych, które powstają obecnie w fabrykach korzystających z 32-nanometrowego procesu produkcyjnego. Jednak zaletą bakterii jest ich możliwość samonaprawy, przeprogramowywania oraz potencjalnie łatwiejsze tworzenie struktur 3D.

Obecnie profesor Voigt pracuje nad stworzeniem bakteryjnego komputera zdolnego do przyjmowania komend w podobny sposób, jak przyjmują je tradycyjne komputery.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wirusy komputerowe nabieraja nowych znaczen ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mi to bardziej przypomina Star Trek-owe Biożelowe chipy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

mnie trochę martwi wydajność takiego "komputera" sygnały chemiczne jednak są znacznie wolniejsze od elektrycznych... szczególnie biorąc pod uwagę szybkość przepływu związków chemicznych i konieczność ich syntezy...

jeśli chodzi natomiast o wielkość to bym się nie przejmował... kwestia czasu gdy każda komórka będzie obsługiwać więcej stanów niż tylko 0 i 1 i wtedy zacznie to mieć więcej sensu... o ile ktoś wymyśli sposób na przyspieszenie obliczeń...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No wiec wlasnie, czemu wciaz 1 i 0 ?!

Jak juz mamy "chinczykow" jako bezposredni skladnik komputera to niech cos z siebie dadza ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

mnie trochę martwi wydajność takiego "komputera" sygnały chemiczne jednak są znacznie wolniejsze od elektrycznych... szczególnie biorąc pod uwagę szybkość przepływu związków chemicznych i konieczność ich syntezy...

 

Jeśli popatrzysz na swoją budowę to zauważysz, że można zbudować całkiem sprawny automat chemiczny ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No wiec wlasnie, czemu wciaz 1 i 0 ?!

 

Kompatybilność, prostota i jednoznaczność.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Budowa własnego PC pozwala wydobyć maksimum możliwości z dostępnych podzespołów. Na czym jednak powinieneś skupiać się w pierwszej kolejności, jeśli potrzebujesz komputera zarówno do pracy, jak i do grania? Oto pigułka wiedzy, która rozwieje twoje wątpliwości!


      Sprzęt do pracy i gier – czy da się połączyć te obie rzeczy? Budowa własnego komputera może być pewnym wyzwaniem dla osób bez większego doświadczenia. Stworzenie sprzętu z zakupionych przez siebie podzespołów pozwala jednak na kontrolowanie każdego aspektu – od procesora, przez chłodzenie po pastę termoprzewodzącą. W taki sposób możesz więc nie tylko zaoszczędzić pieniądze, ale również wykrzesać jeszcze więcej z każdego elementu.
      Oczywiście produkty, z których będzie składał się twój komputer, zależą od twoich potrzeb. Niektórzy nie potrzebują zabójczo szybkich maszyn, skupiając się na przeglądaniu Internetu czy rozmowie z bliskimi. Na drugim biegunie są gracze, którzy marzą o płynnej rozgrywce i najwyższym poziomie grafiki.
      Istnieją jednak użytkownicy, którzy potrzebują niezwykle wszechstronnego urządzenia. Mowa tu na przykład o osobach, które pracują zdalnie i z tego względu rozglądają się za komputerem gotowym zarówno do pisania, montażu filmów czy obróbki zdjęć, jak i do rozrywki. Na szczęście te dwa światy idą ze sobą w parze i w większości przypadków ich potrzeby mocno się ze sobą pokrywają.
       
      Komputer do pracy – na jakich elementach powinieneś się skupić? Praca zdalna staje się coraz popularniejsza, lecz może ona przyjmować naprawdę wiele oblicz. Trudno jest więc znaleźć komputer, który będzie odpowiadać potrzebom każdego pracownika. Niektórzy zresztą nie potrzebują wystrzałowych osiągów, z których i tak nie skorzystają. Wszystko zależy więc tak naprawdę od wykonywanego zawodu.
      Osoby zajmujące się pracą z tekstem przede wszystkim powinny skupić się na dużej ilości pamięci operacyjnej RAM. Dzięki temu nawet kilkanaście otwartych kart w przeglądarce nie spowolnią działania. Tym samym warto również postawić na mocny procesor, który pozwoli podtrzymać wielozadaniowość, nawet w przypadku korzystania z dwóch monitorów.
      Karta graficzna w tym przypadku schodzi na dalszy plan, czego zdecydowanie nie można powiedzieć na przykład o obróbce zdjęć czy montażu filmów. GPU jest kluczem do szybkiego działania programów i przetwarzania samych plików w edytorach. Tu zresztą również konieczny jest wydajny procesor, który udźwignie na sobie niezwykle wymagające zadanie w postaci renderów, czyli kompilowania ujęć filmowych w jeden duży plik.
       
      Grafika, stabilność, moc – kluczowe elementy dobrego PC do gier Gracze także powinni skupiać się na trzech najważniejszych elementach wspomnianych wyżej: procesorze, pamięci RAM oraz karcie graficznej. W tym ostatnim przypadku warto postawić na dedykowaną odmianę, gotową na najnowsze tytuły. Ciekawą propozycją dla osób szukających topowych rozwiązań jest nowa karta graficzna NVIDIA GeForce RTX 5090, którą możesz sprawdzić na przykład na stronie https://www.morele.net/karta-graficzna-msi-geforce-rtx-5090-ventus-3x-oc-32gb-gddr7-14471822/.
      Jeśli budujesz komputer od zera, pamiętaj również o wytrzymałej płycie głównej czy mocnym zasilaczu, dzięki któremu wszystkie podzespoły będą w stanie działać na maksymalnych obrotach. Stabilność w grach online zapewni odpowiednia karta sieciowa, a długą żywotność poszczególnych elementów możesz zapewnić między innymi dzięki wydajnemu chłodzeniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komórki bakterii potrafią „zapamiętać” krótkotrwałe tymczasowe zmiany w samych sobie i otoczeniu. I mimo że zmiany te nie zostają zakodowane w genomie, mogą być przekazywane potomstwu przez wiele pokoleń. Odkrycie dokonane przez naukowców z Nortwestern University i University of Texas nie tylko rzuca wyzwanie naszemu rozumieniu biologii najprostszych organizmów oraz sposobom, w jaki przekazują i dziedziczą cechy fizyczne. Może również zostać wykorzystane w medycynie.
      Podstawowe założenie z dziedziny biologii bakterii mówi, że dziedziczne zmiany fizyczne są u nich kodowane w DNA. Jednak, z perspektywy bardziej złożonych organizmów, wiemy, że informacja może być też przechowywana w sieci regulacyjnej genów. Chcieliśmy więc sprawdzić, czy istnieją cechy przekazywane przyszłym pokoleniom nie za pomocą DNA. Odkryliśmy, że czasowe zmiany w regulacji genów odciskają trwałe ślady, które zostają przekazane następnym pokoleniom, stwierdzają badacze.
      Nauka przez kilkadziesiąt lat uważała, że cechy organizmu są przekazywane przede wszystkim, jeśli nie wyłącznie, w DNA. Jednak w 2001 roku, po ukończeniu Human Genome Project, założenie to trzeba było zmienić. Obecnie wiemy, że nie tylko zmiany w DNA wchodzą tutaj w grę. Niedawne badania wykazały na przykład, że dzieci holenderskich mężczyzn, którzy w życiu płodowym doświadczyli wraz z matkami głodu w czasie II wojny światowej, są bardziej narażone na otyłość jako dorośli. Wiemy, że przyczyną nie są tutaj zmiany genetyczne. Jednak u ludzi znalezienie podstawowej przyczyny takiego niegenetycznego dziedziczenia jest bardzo trudne.
      Profesor Adilson Motter i jego zespół zaczęli się zastanawiać, czy nie łatwiej byłoby śledzić takie zmiany u prostszych organizmów. Przyjrzeli się więc Escherichii coli. W przypadku E. coli cały organizm to pojedyncza komórka. Ma ona mniej genów, około 4000, w porównaniu z ludzkimi 20 000. Brak jej też wewnątrzkomórkowych struktur będących podstawą trwałości DNA u drożdży oraz różnorodności rodzajów komórek u wyżej rozwiniętych organizmów. E. coli to dobrze zbadany organizm modelowy, do pewnego stopnia znamy też jej sieć regulacyjną genów (GRN), stwierdza współautor badań, Thomas Wytock.
      Naukowcy wykorzystali model matematyczny GRN do czasowego wyłączania i włączania genów E. coli. Okazało się, że takie przejściowe zaburzenia mogą powodować trwałe zmiany, które są przekazywane przez wiele pokoleń. Teraz uczeni przygotowują się do eksperymentów laboratoryjnych, podczas których będą weryfikowali swoje odkrycie.
      Jeśli mają rację i zmiany są kodowane raczej w GRN niż w DNA, powstaje pytanie o przekazywanie ich kolejnym pokoleniom. Autorzy badań zaproponowali hipotezę, zgodnie z którą odwracalne zmiany wywołują nieodwracalne zaburzenia w sieci regulacyjnej genów. Wyłączenie jednego genu, wpływa na gen sąsiadujący, to zaś wpływa na kolejny gen. Gdy pierwszy z genów ponownie zostanie włączony, trwa już reakcja łańcuchowa, która jest odporna na zmiany z zewnątrz. Naukowcy sądzą, że taki wpływ ma nie tylko dezaktywacja i aktywacja genów, ale również różne zmiany środowiskowe. Może to być zmiana temperatury, dostępności pożywienia czy kwasowości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Celowana terapia radionuklidowa (TRT – targeted radionuclide therapy) polega na podawaniu do krwi radiofarmaceutyków, które wędrują do komórek nowotworowych, a gdy znajdą się w guzie emitują cząstki alfa i beta, niszcząc tkankę nowotworową. Obecnie stosowane metody TRT zależą od obecności unikatowych receptorów na powierzchni komórek nowotworowych. Radiofarmaceutyki wiążą się z tymi właśnie receptorami.
      To z jednej strony zaleta, gdyż leki biorą na cel wyłącznie komórki nowotworowe, oszczędzając te zdrowe. Z drugiej strony wysoka heterogeniczność guza i zdolność komórek nowotworowych do szybkich mutacji powodują, że może dojść do zmiany receptorów, przez co TRT będzie nieskuteczna. Naukowcy z University of Cincinnati mają pomysł na rozwiązanie tego problemu i precyzyjne dostarczenie radionuklidów niezależnie od fenotypu receptorów komórek nowotworowych.
      Uczeni zmodyfikowali niepatogenną probiotyczną bakterię Escherichia coli Nissle (EcN) tak, by dochodziło na jej powierzchni do nadmiernej ekspresji receptora metali. Bakteria, które może zostać dostarczona bezpośrednio do guza, przyciąga następnie specyficzny dla siebie radiofarmaceutyk zawierający specjalny kompleks organiczny z terapeutycznym radioizotopem 67Cu.
      Tak długo, jak te zmodyfikowane bakterie pozostają w guzie, trafi do niego też radioaktywny metal. Niezależnie od tego, czy na powierzchni komórek nowotworowych znajdzie się receptor czy też nie, mówi główny autor badań, Nalinikanth Kotagiri. Co więcej, możliwe jest zastąpienie izotopu 67Cu przez 64Cu, dzięki czemu można dokładnie obrazować położenie bakterii wewnątrz guza metodą pozytonowej tomografii emisyjnej. Możemy bez problemu przełączać się między 64Cu a 67Cu by obrazować guza i gdy już to zrobimy, możemy wprowadzić kolejną molekułę w celu przeprowadzenia leczenia, zapewnia Kotagiri.
      Szczegóły badań zostały opisane na łamach Advanced Healthcare Materials.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mutacje prowadzące do rozwoju nowotworów mogą być wywołane obecnością bakterii powszechnie występującej w naszych jelitach. Naukowcy z Hubrecht Institute i Princess Maxima Center w Utrechcie przeprowadzili eksperymenty laboratoryjne podczas których modelowe ludzkie jelita poddali działaniu jednego ze szczepów E. coli. Okazało się, że obecność bakterii wywoływała pronowotworowe zmiany w DNA. Takie same zmiany odkryto w DNA osób cierpiących na raka jelita grubego.
      To pierwsze badania, podczas których wykazano istnienie bezpośredniego związku pomiędzy obecnością bakterii zamieszkujących nasze ciało a pojawieniem się zmian genetycznych prowadzących do nowotworu.
      Jednym z gatunków bakterii, które mogą być dla nas szkodliwe, jest E. coli. Okazuje się, że jeden z jej szczepów jest „genotoksyczny”. Szczep ten wydziela związek chemiczny o nazwie kolibaktyna, który może uszkadzać DNA komórek naszego organizmu. Od dawna podejrzewano, że genotoksyczne E. coli, obecne u 20% dorosłych, może przyczyniać się do rozwoju nowotworów.
      Okazuje się, że te genotoksyczne E. coli można... kupić w sklepie. Na rynku obecne są probiotyki zawierające ten genotoksyczny szczep E. coli. Niektóre z tych probiotyków są nawet używane podczas testów klinicznych. Należy jeszcze raz dokładnie przebadać ten szczep. Mimo, że może on przynosić pewne krótkoterminowe korzyści, to probiotyki te mogą doprowadzić do rozwoju nowotworu dziesiątki lat po ich zażyciu, mówi Hans Clevers z Hubrecht Institute.
      Dotychczas nie było wiadomo, czy bakterie obecne w jelitach mogą prowadzić do kancerogennych mutacji w DNA. Holenderscy uczeni wykorzystali organoidy jelitowe. Organoidy to komórki hodowane w specjalnych trójwymiarowych środowiskach, tworzące miniaturowa narządy będące uproszczonymi modelami prawdziwych narządów w organizmie.
      Organoidy te zostały podane działaniu genotoksycznego szczepu E. coli. Po pięciu miesiącach naukowcy przeanalizowali DNA komórek organoidów i zbadali mutacje spowodowane przez bakterie.
      Uczeni stwierdzili, że genotoksyczna E. coli wywołuje dwa jednocześnie występujące rodzaje mutacji. Jedną z nich była zamiana adeniny (A) w którąkolwiek inną zasadę z DNA, a drugą była utrata pojedynczej adeniny z długiego łańcucha adenin. Jednocześnie, w obu mutacjach adenina pojawiała się po przeciwnej stronie podwójnej helisy, w odległości 3–4 par zasad od zmutowanego miejsca.
      Holendrzy odkryli też mechanizm działania kolibaktyny. Okazało się, że związek ten ma zdolność do przyłączania dwóch adenin w tym samym czasie i ich wzajemnego sieciowania (cross-link). To było jak ułożenie puzzli do końca. Wzorzec mutacji, jaki obserwowaliśmy podczas naszych badań można dobrze wyjaśnić strukturą chemiczną kolibaktyny, stwierdza Cayetano Pleguezuelos-Manzano.
      Gdy już poznali sposób działania kolibaktyny, postanowili sprawdzić, czy ślady tego oddziaływania można znaleźć u pacjentów. Naukowcy przeanalizowali mutacje w ponad 5000 guzach nowotworowych reprezentujących różne rodzaje nowotworów. Okazało się, że jeden rodzaj nowotworu zdecydowanie się tutaj wyróżnia. W ponad 5% guzów raka jelita grubego było widać wyraźne ślady takiej właśnie mutacji, podczas gdy w innych rodzajach nowotworów były one obecne w mniej niż 0,1% guzów, mówi Jens Puschhof. Ślady takie znaleziono w przypadku takich nowotworów jak nowotwory jamy ustnej czy pęcherza. Wiadomo, że E. coli może infekować te organy. Chcemy zbadać, czy genotoksyczność tej bakterii może wpływać na rozwój nowotworów poza jelitem grubym.
      Badania te mają olbrzymie znaczenie dla zapobiegania nowotworom. Niewykluczone, że w przyszłości badanie na obecność genotoksycznych E. coli stanie się jedną z metod identyfikowania grup podwyższonego ryzyka, że uda się wyeliminować z jelit szkodliwy szczep E. coli, czy też, że pozwoli to na bardzo wczesną identyfikację choroby.
      Badania opisano na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Młodzież, która zbyt dużo czasu spędza przed komputerem, ma więcej ubytków i częstsze problemy z chorobami przyzębia, np. z krwawieniem dziąseł – wynika z analiz naukowców WUM i UKSW, którzy przebadali ponad 1,6 tys. polskich 18-latków. To pierwsze takie badania w Europie.
      W ramach projektu, którego kierownikiem była prof. Dorota Olczak-Kowalczyk z Warszawskiego Uniwersytetu Medycznego (WUM), przebadano ponad 1,6 tysiąca 18-latków z Polski. Badania polegały zarówno na wypełnieniu kwestionariusza, który zawierał pytania dotyczące statusu społeczno-ekonomicznego i informacji o zachowaniach związanych ze zdrowiem, jak i na ocenie klinicznej stanu zębów i dziąseł. Do badań wybrano szkoły z każdego województwa z powiatów o charakterze wiejskim i miejskim.
      Okazało się, że nadmierne, czyli trwające ponad 3 godziny dziennie, korzystanie z komputera zadeklarowało 31 proc. respondentów. Równocześnie młodzież ta miała zdecydowanie częściej niewypełnione ubytki – opowiada PAP współprowadzący badania prof. Jacek Tomczyk z Instytutu Ekologii i Bioetyki Uniwersytetu Kardynała Stefana Wyszyńskiego (UKSW) w Warszawie. U nadużywających komputera nastolatków zdiagnozowano średnio 2,27 ubytków, podczas gdy u tych mniej przesiadujących przed ekranem – 1,97.
      Z ankiety wynika, że osoby z grupy spędzającej przed komputerem najwięcej czasu gorzej dbają o higienę jamy ustnej – np. tylko 34 proc. spośród nich posługuje się nicią dentystyczną, natomiast wśród osób nieprzesiadujących przy komputerze – 41 proc.
      Również osobom, które zadeklarowały nadmierne korzystanie z komputera, towarzyszyło większe ryzyko chorób przyzębia w postaci krwawienia z dziąseł. Taki symptom w tej grupie odnotowało 35 proc. badanych. Tymczasem wśród respondentów nienadużywających komputera krwawienie występowało u 29 proc. badanych.
      Tomczyk dodaje, że nadmierne korzystanie z komputera wiąże się również ze złymi nawykami żywieniowymi. Młodzież ta częściej opuszcza śniadania, rzadziej spożywa warzywa i owoce, a częściej spożywa produkty bogate w cukry.
      Do tej pory wiele badań wskazywało, że nadmierne używanie komputerów może wiązać się z niezdrowym trybem życia – brakiem ruchu, nieregularnymi posiłkami, niezdrowym jedzeniem typu fast-food czy brakiem snu. Takie zachowania skutkują wieloma problemami zdrowotnymi m.in. otyłością czy cukrzycą a nawet zaburzeniami psychicznymi.
      Otwartym pozostało pytanie o związek między nadmiernym używaniem komputerów, a zdrowiem jamy ustnej. Jedyne takie badania przeprowadzono w Korei Południowej z uwagi na to, że kraj ten ma najwyższy odsetek internautów na świecie. Postanowiliśmy przeprowadzić podobne analizy wśród polskiej młodzieży – opowiada Tomczyk.
      Czy skala problemu nieodpowiedniej higieny jamy ustnej w Polsce wśród młodzieży nadużywającej komputera jest zbliżona do skali w Korei Płd.? W ocenie naukowca odpowiedź na to pytanie nie jest jasna, bo badania przeprowadzono w nieco inny sposób. Jednak tendencja wyłaniająca się z obu badań jest zbliżona – podkreśla Tomczyk.
      Naukowiec zapytany przez PAP, w jaki sposób należy walczyć z problemem odpowiada krótko: większa edukacja. Wiadomo, że przesiadywanie przed komputerem sprzyja wielu chorobom, w tym otyłości. Natomiast trzeba pokazywać młodzieży i rodzicom, że do tej plejady chorób należy również zaliczyć – o czym nie wiedziano – niekorzystne zmiany w jamie ustnej – kończy.
      Wyniki badań przeprowadzonych w 2017 r. w ramach projektu „Monitoring zdrowia jamy ustnej populacji polskiej” ukażą się w czasopiśmie Clinical and Experimental Dental Research.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...