Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Im dalej w las, tym więcej drzew, a drzewa zasłaniają nam las - tak można by podsumować kłopoty, jakich przysparza nam dalszy rozwój nauki. Wykonanie koniecznych pomiarów, czy eksperymentów wymaga coraz większych nakładów i rozwiązywania różnych technicznych kłopotów. Dotyczy to także astronomii kosmologii, dlatego NASA postanowiła zaprząc do pomocy chętnych naukowców z zupełnie innych dziedzin.

Jedną z największych zagadek kosmologii jest ciemna materia i ciemna energia. To one tworzą większość masy naszego wszechświata, odpowiednio 24 procent i 72 procent, ponieważ materia, jaką znamy, to zaledwie cztery procent. Ciemna materia prawdopodobnie przenika się ze zwykłą, ale oddziałuje z nią grawitacyjnie, podczas gdy jeszcze bardziej tajemnicza ciemna energia zamiast przyciągać - odpycha.

Nie mogąc w sposób fizyczny ich „pomacać", naukowcy chcą zbadać ich rozłożenie we Wszechświecie opierając się na ich grawitacyjnym oddziaływaniu na obiekty kosmiczne, zwłaszcza galaktyki. Metoda ta oparta jest o znane powszechnie soczewkowanie grawitacyjne, przewidziane jeszcze przez Einsteina, czyli zakrzywianie biegu promieni światła przez obiekty o dużej masie.

Obraz odległych galaktyk i gwiazd, jaki obserwujemy, jest zniekształcony przez taki właśnie efekt soczewkowania. Czasami taka galaktyka lub gwiazda wydaje się powiększona, czasem przekrzywiona, często zniekształcenie jest tak drobne, że niewidoczne dla gołego oka. Analiza tych zniekształceń mogłaby powiedzieć nam wiele o strukturze przestrzeni, ale zagadnienie przekracza możliwości nie tylko pojedynczego badacza, ale dowolnego zespołu. A do problemu dochodzi jeszcze kwestia niedoskonałości naszych przyrządów - najlepsze nawet teleskopy wprowadzają własne zniekształcenia, często większe od tych pochodzących od soczewkowania, które trzeba odfiltrować.

Dlatego 3 grudnia NASA ogłosiła otwarty konkurs dla naukowców różnych specjalności, którzy chcieliby zmierzyć się z tym zagadnieniem. Na rozwiązanie czekają „galaktyczne puzzle", każde złożone z tysięcy obrazów. W istocie problem jest zbliżony do innego ciekawego, a popularnego ostatnio zagadnienia, jakim jest zautomatyzowane rozpoznawanie i analizowanie obrazów (na przykład twarzy) przez zaawansowane algorytmy. To może być ciekawe wyzwanie dla inżynierów i naukowców różnych specjalności, chętnych do podejścia interdyscyplinarnego.

Na rozwiązanie zagadek chętni mają dziewięć miesięcy, zwycięzca zostanie ogłoszony na specjalnej gali i oprócz satysfakcji i chwały otrzyma okolicznościowe gadżety. Pełne informacje można znaleźć na oficjalnej stronie GREAT 2010 (GRavitational lEnsing Accuracy Testing).

Nie jest to pierwsze takie „powszechne ruszenie", ogłoszone przez NASA, pierwszy otwarty konkurs ogłoszono w 2008 roku, a dzięki wartościowym efektom zdecydowano się kontynuować pomysł w postaci corocznej tradycji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy ktoś wliczył energię jaką posiadają fale elektromagnetyczne (czyli idąc że E=mc^2 czyli m=E/(c^2)) a siła... wystarczy aby wszechświat się obracał, i pojawia się siła odśrodkowa czyli zmienna stała kosmologiczna.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy ktoś wliczył energię jaką posiadają fale elektromagnetyczne (czyli idąc że E=mc^2 czyli m=E/(c^2)) a siła... wystarczy aby wszechświat się obracał, i pojawia się siła odśrodkowa czyli zmienna stała kosmologiczna.

 

Fale elektromagnetyczne? Czyli fotony? Czyli gaz fotonowy? Tak. Jest wliczony.

Wszechświat się obraca... względem jakiego układu? Możliwe, że tak jest, ale możliwe jest też, że to Bóg przytył przez te wszystkie miliardy lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pffff, puzzle zaoferowali już jakiś czas temu:

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Common move" to związek frazeologiczny tłumaczony jako "pospolite ruszenie", a nie "powszechne"...

 

"Common move" w tekście oryginału w ogóle nie występuje, ale poza tym uwaga jest słuszna. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dedukcja była poprawna, nie trafiła, bo ja nie tłumaczę, tylko piszę własnym stylem. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dedukcja była poprawna, nie trafiła, bo ja nie tłumaczę, tylko piszę własnym stylem. ;)

 

To się chwali ;-) Ale jednak indukcja była nietrafiona, damn - a chciałem być lingwistycznym Szerlokiem Holmesem :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja tam nie widzę problemu z tą odpychającą 'ciemną energią' ...

Widzimy termiczny gaz fotonów: które zderzając się z obiektami przekazują im swój pęd, czyli powodują odpychanie ... mianowicie promieniowanie mikrofalowe tła (CMB) - 'malutkie fale' elektromagnetycznego szumu termicznego - dzięki zasadzie ekwipartycji energii, stopnie swobody pola EM wyrównują temperaturę, czyli średnią zawartą w nich energię - do 2.725K - co wg. wikipedii sumuje się do 6*10^-5 oczekiwanej energii wszechświata ...

Mało? No ale mamy przecież więcej oddziaływań i odpowiadających im pól - grawitacyjne, słabe, silne - które jest dużo trudniej bezpośrednio obserwować ... ale w pewien bardzo słaby sposób te pola oddziaływają jednak między sobą, czyli przez okres życia wszechświata część ich stopni swobody też powinno wyrównać temperaturę, np. do tych 2.725K - może dając wymaganą 'ciemną energię'...

Niektóre stopnie swobody mogą wymagać aktywnych regionów do stermalizowania, tak że dzieje się to tylko w pobliżu galaktyk - zwiększając ich masę w postaci halo np. dla soczewkowania grawitacyjnego - czyli zachowując się dokładnie jak to czego oczekują od 'ciemnej materii' ...

 

Szukają jakichś egzotycznych wyjaśnień, cząstek .. a zupełnie nie widziałem żeby chociaż próbowali rozważać proste i wręcz oczekiwane wyjaśnienie - że te wszystkie 'ciemne byty' to po prostu szum termiczny ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja tam nie widzę problemu z tą odpychającą 'ciemną energią' ...

Widzimy termiczny gaz fotonów: które zderzając się z obiektami przekazują im swój pęd, czyli powodują odpychanie ... mianowicie promieniowanie mikrofalowe tła (CMB) - 'malutkie fale' elektromagnetycznego szumu termicznego - dzięki zasadzie ekwipartycji energii, stopnie swobody pola EM wyrównują temperaturę, czyli średnią zawartą w nich energię - do 2.725K - co wg. wikipedii sumuje się do 6*10^-5 oczekiwanej energii wszechświata ...

Mało? No ale mamy przecież więcej oddziaływań i odpowiadających im pól - grawitacyjne, słabe, silne - które jest dużo trudniej bezpośrednio obserwować ... ale w pewien bardzo słaby sposób te pola oddziaływają jednak między sobą, czyli przez okres życia wszechświata część ich stopni swobody też powinno wyrównać temperaturę, np. do tych 2.725K - może dając wymaganą 'ciemną energię'...

Niektóre stopnie swobody mogą wymagać aktywnych regionów do stermalizowania, tak że dzieje się to tylko w pobliżu galaktyk - zwiększając ich masę w postaci halo np. dla soczewkowania grawitacyjnego - czyli zachowując się dokładnie jak to czego oczekują od 'ciemnej materii' ...

 

Szukają jakichś egzotycznych wyjaśnień, cząstek .. a zupełnie nie widziałem żeby chociaż próbowali rozważać proste i wręcz oczekiwane wyjaśnienie - że te wszystkie 'ciemne byty' to po prostu szum termiczny ...

 

Hmm, jakkolwiek Twoje podejście jest ciekawe, to może są jakieś właściwości ciemnej materii, które wykluczają jej tożsamość z owym "szumem termicznym"? W każdym razie mi też trudno uwierzyć, żeby nikt na coś takiego wpadł... z drugiej strony, wiele razy tak bywało w historii ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niestety Nauka to nie jest tylko idealistyczne szukanie prawdy, ale jednak niezwykle skomplikowane zjawisko społeczne ...

No i na przykład ciemną energię uparcie próbują wepchać w 'największą pomyłkę Einsteina' - czyli stałą kosmologiczną: coś jakby oczekiwaną krzywiznę czasoprzestrzeni ...

Podczas gdy to nie może być ostateczna odpowiedź - OTW jest teorią makroskopową: uśrednia - jest teorią efektywną ... czyli jeśli chcielibyśmy ją kiedyś połączyć z mikroskopową, musimy też znaleźć tam konkretny odpowiednik dla tej stałej kosmologicznej ...

A co do 'ciemnej materii' ... mamy kolejne próby poszukiwań nowych cząstek MONDów itd które nic nie znajdują ... może coś podobnego powinno powstawać w zderzaczach ... poza tym jednak powinna mieć niezerową lepkość (zapadać się grawitacyjnie), oddziaływać/akumulować się w centrach gwiazd ...

... więc może to jednak nie cząstki, tylko coś naturalnego dla każdego rodzaju pól - szum ... tyle że jest to wbrew standardowemu paradygmatowi ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic,  dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
      Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
      Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
      Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
      Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA tymczasowo straciła kontakt z Voyagerem 2, drugim najodleglejszym od Ziemi pojazdem kosmicznym wysłanym przez człowieka. Przed dwoma tygodniami, 21 lipca, popełniono błąd podczas wysyłania serii komend do Voyagera, w wyniku czego jego antena odchyliła się o 2 stopnie od kierunku wskazującego na Ziemię. W tej chwili Voyager, który znajduje się w odległości niemal 20 miliardów kilometrów od naszej planety, nie może odbierać poleceń ani przesyłać danych.
      W wyniku zmiany położenia anteny Voyager nie ma łączności z Deep Space Network (DSN), zarządzaną przez NASA siecią anten służących do łączności z misjami międzyplanetarnymi. W skład DSN wchodzą trzy ośrodki komunikacyjne, w Barstow w Kalifornii, w pobliżu Madrytu i Canberry. Rozmieszczono je tak, by każda misja w głębokim kosmosie miała łączność z przynajmniej jednym zespołem anten. Ośrodek z Canberry, którego jedna z anten jest odpowiedzialna za komunikację z sondą, będzie próbował skontaktować się z Voyagerem, w nadziei, że uda się nawiązać łączność.
      Na szczęście NASA zabezpieczyła się na tego typu przypadki. Kilka razy w roku Voyagery resetują położenie swoich anten tak, by mieć łączność z Ziemią. Najbliższy reset nastąpi 15 października. Jeśli więc wcześniej nie uda się połączyć z Voyagerem, będzie można się z nim skomunikować za 2,5 miesiąca.
      Voyager 2 został wystrzelony 20 sierpnia 1977 roku. Odwiedził Jowisza, Saturna, Urana i Neptuna, a w 2018 roku opuścił heliosferę i wszedł w przestrzeń międzygwiezdną, dostarczając intrygujących wyników badań. NASA nie po raz pierwszy nie ma kontaktu z sondą. W 2020 roku agencja nie kontaktowała się z nią przez 8 miesięcy, gdyż remontowana była antena DSS 43 w pobliżu Canberry, której zadaniem jest wymiana informacji z sondą.
      Voyagery zasilane są radioizotopowymi generatorami termoelektrycznymi, które zamieniają w prąd elektryczny ciepło generowane przez rozpad plutonu-238. Zapasy plutonu stopniowo się wyczerpują, więc naukowcy wyłączają kolejne zużywające prąd urządzenia. Najprawdopodobniej obie sondy stracą zasilanie w 2025 roku. Do tej pory jednak naukowcy spróbują wycisnąć z nich najwięcej, jak się da.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krótko po Wielkim Wybuchu, gdy wszechświat zaczął się rozszerzać, przypominał on gotującą się wodę i dochodziło w nim do nieznanych dotychczas przejść fazowych. Wyobraźmy sobie, że bąble pojawiały się w różnych miejscach wczesnego wszechświata. Stawały się coraz większe, zderzały się ze sobą. W końcu mieliśmy do czynienia ze złożonym układem zderzających się bąbli, które uwolniły energię i wyparowały, mówi Martin S. Sloth z Centrum Kosmologii i Fenomenologii Fizyki Cząstek Uniwersytetu Południowej Danii. Wraz z Florianem Niedermannem z Nordyckiego Instytutu Fizyki Teoretycznej (NORDITA) w Sztokholmie stworzył on hipotezę, która ma rozwiązywać problemy ze stałą Hubble'a.
      Stała Hubble'a to wartość, która mówi nam, z jaką prędkością wszechświat się rozszerza. Można ją obliczyć na podstawie analizy promieniowania tła albo na podstawie tempa oddalania się od nas gwiazd i galaktyk. Obie metody są prawidłowe, obie są przyjęte przez naukę. Problem w tym, że dają różne wyniki. A jest on na tyle poważny, że przed kilku laty odbyło się specjalne spotkanie, na którym omawiano to zagadnienie.
      W nauce powinniśmy być w stanie dojść do tych samych wyników za pomocą różnych metod. Mamy więc problem. Dlaczego nie otrzymujemy takiego samego wyniku w tym przypadku, gdy jesteśmy pewni, że obie metody są prawidłowe?, pyta Niedermann. Jeśli uważamy obie te metody za prawidłowe, a tak jest, może to nie metody są problemem. Może powinniśmy popatrzeć na sam początek, na bazę do której te metody stosujemy. Może to w niej tkwi błąd, dodaje.
      Bazą dla obu metod obliczania stałej Hubble'a jest Model Standardowy, który zakłada, że przez 380 000 lat po Wielkim Wybuchu wszechświat wypełniony był promieniowaniem i materią – zarówno normalną jak i ciemną – i to były dominujące formy energii. Promieniowanie i zwykła materia były skompresowane w ciemnej, gorącej gęstej plazmie. Dla takiego modelu otrzymujemy obecnie dwie różne wartości stałej Hubble'a.
      Sloth i Niedermann wysunęli hipotezę, że we wczesnym wszechświecie dużą rolę odgrywała nieznana forma ciemnej energii. Okazało się, że gdy przyjęli takie założenie i obliczyli dla niego stałą Hubble'a, to za pomocą obu metod uzyskali ten sam wynik. Hipotezę tę nazwali NEDE (New Early Dark Energy – Nowa Wczesna Ciemna Energia).
      Naukowcy postulują, że ta nowa ciemna energia przeszła zmianę fazy na krótko przed zmianą wszechświata z gęstej gorącej plazmy w stan, w jakim obecnie się znajduje. Ciemna energia wczesnego wszechświata przeszła zmianę fazy tak, jak woda może zmienić fazę pomiędzy stanem stały, ciekłym i gazowym. Podczas tej przemiany fazowej bąble energii zderzały się ze sobą, uwalniając energię, wyjaśnia Niedermann. Proces ten mógł trwać bardzo krótko, tylko tyle czasu ile trzeba dwóm cząstką by się zderzyły, a mógł trwać też 300 000 lat. Tego nie wiemy, ale próbujemy się dowiedzieć, dodaje Sloth.
      Obaj naukowcy zdają sobie sprawę z faktu, że sugerują, iż podstawy naszego rozumienia wszechświata są wadliwe i że zaproponowali istnienie nieznanych dotychczas cząstek lub sił. Zauważają jednak, że w ten sposób można wyjaśnić problemy ze stałą Hubble'a. Jeśli ufamy obserwacjom i obliczeniom, to musimy zaakceptować fakt, iż nasz obecny model wszechświata nie wyjaśnia danych. Musimy więc poprawić ten model. Ale nie poprzez jego odrzucenie i odrzucenie wszystkiego, w czym dotychczas się sprawdził, ale przez dopracowanie go i uszczegółowienie, stwierdzają. A – jak mówią – dodanie do obecnego Modelu Standardowego hipotezy o zmianie fazy ciemnej energii we wczesnym wszechświecie pozwala na rozwiązanie problemów z obliczeniem tempa rozszerzania się wszechświata.
      Warto w tym miejscu przypomnieć, że przed dwoma laty grupa fizyków wpadła na ślady nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu. Jeszcze inną próbą rozwiązania problemu jest przyjęcie, że wszechświat nie jest homogeniczny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) poinformowały o rozpoczęciu współpracy, której celem jest zbudowanie jądrowego silnika termicznego (NTP) dla pojazdów kosmicznych. Współpraca będzie odbywała się w ramach programu DRACO (Demonstration Rocket for Agile Cislunar Operations), który od jakiegoś czasu prowadzony jest przez DARPA.
      Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
      Administrator NASA Bill Nelson powiedział, że silnik może powstać już w 2027 roku. Ma on umożliwić szybsze podróżowanie w przestrzeni kosmicznej, co ma olbrzymie znacznie dla bezpieczeństwa astronautów. Skrócenie czasu lotu np. na Marsa oznacza, że misja załogowa mogłaby zabrać ze sobą mniej zapasów, ponadto im krótsza podróż, tym mniejsze ryzyko, że w jej trakcie dojdzie do awarii. Jądrowy silnik termiczny może być nawet 4-krotnie bardziej wydajny niż silnik chemiczny, a to oznacza, że napędzany nim pojazd będzie mógł zabrać cięższy ładunek i zapewnić więcej energii dla instrumentów naukowych. W silniku takim reaktor jądrowy ma być wykorzystywany do generowania ekstremalnie wysokich temperatur. Następnie ciepło z reaktora trafiałoby do ciekłego paliwa, które – gwałtownie rozszerzając się i uchodząc z duża prędkością przez dysze – będzie napędzało pojazd.
      To nie pierwsza amerykańska próba opracowania jądrowego silnika termicznego. Na początku lat 60. ubiegłego wieku rozpoczęto projekt NERVA (Nuclear Engine for Rocket Vehicle Application). Projekt zaowocował powstaniem pomyślnie przetestowanego silnika. Jednak ze względu na duże koszty, prace nad silnikiem zakończono po 17 latach badań i wydaniu około 1,4 miliarda USD.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wczoraj rozpoczął pracę powołany przez NASA 16-osobowy zespół, którego zadaniem jest prowadzenie niezależnych badań nad niezidentyfikowanymi zjawiskami powietrznymi (UAP). Jako UAP definiowane są obserwacje zjawisk, których nie można zidentyfikować jako statek powietrzny lub znane zjawisko atmosferyczne. Wstępna faza pracy zespołu potrwa 9 miesięcy.
      W tym czasie, na podstawie danych z cywilnych agend rządowych, z przedsiębiorstw prywatnych i innych źródeł członkowie zespołu mają opracować plan dalszych działań analizujących UAP. Zespół skupi się na analizie danych jawnych, a pełny raport z jego pracy zostanie opublikowany w połowie przyszłego roku. Prace mają położyć podwaliny pod badania UAP przez NASA i inne organizacje. Będą one niezależne od badań prowadzonych przez Pentagon.
      W 2021 roku ukazał się rządowy raport dotyczący 144 niezidentyfikowanych obiektów latających. Spotkał się on z olbrzymim zainteresowaniem, w maju Kongres zorganizował publiczne przesłuchanie dotyczące UAP, a niedługo później Pentagon ogłosił powołanie specjalnego biura badającego UAP. Dotychczas jednak większość badań tego typu jest jednak prowadzonych przez wojsko i służby wywiadowcze. NASA chce przyjrzeć się UAP z czysto naukowego punktu widzenia. Wyjaśnienie takich zjawisk może mieć bowiem znaczenie dla bezpieczeństwa ruchu lotniczego. Dlatego też przedstawiciele zespołu nie stawiają żadnych wstępnych hipotez. Jego przewodniczący mówi, że brak dowodów, by UAP miały pochodzenie pozaziemskie, ale przyznaje, że są to zjawiska, których nie rozumiemy. Chcemy zebrać więcej dowodów, stwierdza.
      Na czele zespołu stanął fizyk teoretyczny David Spergel. Obecnie jest prezydentem Simons Foundation, a w przeszłości był założycielem i dyrektorem Flatiron Institute for Computational Astrophysics. Jednym z jego współpracowników jest profesor Anamaria Berena, która pracuje m.in. dla SETI Institute i Blue Marble Space Institute of Science, gdzie specjalizuje się w zagadnieniach komunikacji złożonych systemów biologicznych, astrobiologią i poszukiwaniem bio- oraz technosygnatur. Z kolei Federica Bianco to profesor fizyki i astrofizyki w University of Delaware i zastępca głównego naukowca tworzonego właśnie Vera C. Rubin Observatory. W zespole znajdziemy też profesor oceanografii Paulę Bontempi, która przez 18 lat pracowała a NASA, gdzie kierowała badaniami nad oceanami. Z kolei Reggie Brothers od wielu lat zajmuje stanowiska menedżerskie w sektorze prywatnym, wcześniej zaś był podsekretarzem ds. nauki i technologii w Departamencie Bezpieczeństwa Wewnętrznego i zastępcą sekretarza obrony ds. badawczych w Pentagonie. Do zespołu powołano też byłego astronautę Scotta Kelly'ego, dziennikarkę naukową Nadię Drake czy Matta Mountaina, prezydenta The Association of Universities for Research and Astronomy, konsorcjum niemal 50 uniwersytetów i instytucji badawczych, które pomagają NASA w budowie i obsłudze obserwatoriów, w tym Teleskopów Hubble'a i Webba.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...