Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Im dalej w las, tym więcej drzew, a drzewa zasłaniają nam las - tak można by podsumować kłopoty, jakich przysparza nam dalszy rozwój nauki. Wykonanie koniecznych pomiarów, czy eksperymentów wymaga coraz większych nakładów i rozwiązywania różnych technicznych kłopotów. Dotyczy to także astronomii kosmologii, dlatego NASA postanowiła zaprząc do pomocy chętnych naukowców z zupełnie innych dziedzin.

Jedną z największych zagadek kosmologii jest ciemna materia i ciemna energia. To one tworzą większość masy naszego wszechświata, odpowiednio 24 procent i 72 procent, ponieważ materia, jaką znamy, to zaledwie cztery procent. Ciemna materia prawdopodobnie przenika się ze zwykłą, ale oddziałuje z nią grawitacyjnie, podczas gdy jeszcze bardziej tajemnicza ciemna energia zamiast przyciągać - odpycha.

Nie mogąc w sposób fizyczny ich „pomacać", naukowcy chcą zbadać ich rozłożenie we Wszechświecie opierając się na ich grawitacyjnym oddziaływaniu na obiekty kosmiczne, zwłaszcza galaktyki. Metoda ta oparta jest o znane powszechnie soczewkowanie grawitacyjne, przewidziane jeszcze przez Einsteina, czyli zakrzywianie biegu promieni światła przez obiekty o dużej masie.

Obraz odległych galaktyk i gwiazd, jaki obserwujemy, jest zniekształcony przez taki właśnie efekt soczewkowania. Czasami taka galaktyka lub gwiazda wydaje się powiększona, czasem przekrzywiona, często zniekształcenie jest tak drobne, że niewidoczne dla gołego oka. Analiza tych zniekształceń mogłaby powiedzieć nam wiele o strukturze przestrzeni, ale zagadnienie przekracza możliwości nie tylko pojedynczego badacza, ale dowolnego zespołu. A do problemu dochodzi jeszcze kwestia niedoskonałości naszych przyrządów - najlepsze nawet teleskopy wprowadzają własne zniekształcenia, często większe od tych pochodzących od soczewkowania, które trzeba odfiltrować.

Dlatego 3 grudnia NASA ogłosiła otwarty konkurs dla naukowców różnych specjalności, którzy chcieliby zmierzyć się z tym zagadnieniem. Na rozwiązanie czekają „galaktyczne puzzle", każde złożone z tysięcy obrazów. W istocie problem jest zbliżony do innego ciekawego, a popularnego ostatnio zagadnienia, jakim jest zautomatyzowane rozpoznawanie i analizowanie obrazów (na przykład twarzy) przez zaawansowane algorytmy. To może być ciekawe wyzwanie dla inżynierów i naukowców różnych specjalności, chętnych do podejścia interdyscyplinarnego.

Na rozwiązanie zagadek chętni mają dziewięć miesięcy, zwycięzca zostanie ogłoszony na specjalnej gali i oprócz satysfakcji i chwały otrzyma okolicznościowe gadżety. Pełne informacje można znaleźć na oficjalnej stronie GREAT 2010 (GRavitational lEnsing Accuracy Testing).

Nie jest to pierwsze takie „powszechne ruszenie", ogłoszone przez NASA, pierwszy otwarty konkurs ogłoszono w 2008 roku, a dzięki wartościowym efektom zdecydowano się kontynuować pomysł w postaci corocznej tradycji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy ktoś wliczył energię jaką posiadają fale elektromagnetyczne (czyli idąc że E=mc^2 czyli m=E/(c^2)) a siła... wystarczy aby wszechświat się obracał, i pojawia się siła odśrodkowa czyli zmienna stała kosmologiczna.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy ktoś wliczył energię jaką posiadają fale elektromagnetyczne (czyli idąc że E=mc^2 czyli m=E/(c^2)) a siła... wystarczy aby wszechświat się obracał, i pojawia się siła odśrodkowa czyli zmienna stała kosmologiczna.

 

Fale elektromagnetyczne? Czyli fotony? Czyli gaz fotonowy? Tak. Jest wliczony.

Wszechświat się obraca... względem jakiego układu? Możliwe, że tak jest, ale możliwe jest też, że to Bóg przytył przez te wszystkie miliardy lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pffff, puzzle zaoferowali już jakiś czas temu:

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Common move" to związek frazeologiczny tłumaczony jako "pospolite ruszenie", a nie "powszechne"...

 

"Common move" w tekście oryginału w ogóle nie występuje, ale poza tym uwaga jest słuszna. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dedukcja była poprawna, nie trafiła, bo ja nie tłumaczę, tylko piszę własnym stylem. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dedukcja była poprawna, nie trafiła, bo ja nie tłumaczę, tylko piszę własnym stylem. ;)

 

To się chwali ;-) Ale jednak indukcja była nietrafiona, damn - a chciałem być lingwistycznym Szerlokiem Holmesem :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja tam nie widzę problemu z tą odpychającą 'ciemną energią' ...

Widzimy termiczny gaz fotonów: które zderzając się z obiektami przekazują im swój pęd, czyli powodują odpychanie ... mianowicie promieniowanie mikrofalowe tła (CMB) - 'malutkie fale' elektromagnetycznego szumu termicznego - dzięki zasadzie ekwipartycji energii, stopnie swobody pola EM wyrównują temperaturę, czyli średnią zawartą w nich energię - do 2.725K - co wg. wikipedii sumuje się do 6*10^-5 oczekiwanej energii wszechświata ...

Mało? No ale mamy przecież więcej oddziaływań i odpowiadających im pól - grawitacyjne, słabe, silne - które jest dużo trudniej bezpośrednio obserwować ... ale w pewien bardzo słaby sposób te pola oddziaływają jednak między sobą, czyli przez okres życia wszechświata część ich stopni swobody też powinno wyrównać temperaturę, np. do tych 2.725K - może dając wymaganą 'ciemną energię'...

Niektóre stopnie swobody mogą wymagać aktywnych regionów do stermalizowania, tak że dzieje się to tylko w pobliżu galaktyk - zwiększając ich masę w postaci halo np. dla soczewkowania grawitacyjnego - czyli zachowując się dokładnie jak to czego oczekują od 'ciemnej materii' ...

 

Szukają jakichś egzotycznych wyjaśnień, cząstek .. a zupełnie nie widziałem żeby chociaż próbowali rozważać proste i wręcz oczekiwane wyjaśnienie - że te wszystkie 'ciemne byty' to po prostu szum termiczny ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja tam nie widzę problemu z tą odpychającą 'ciemną energią' ...

Widzimy termiczny gaz fotonów: które zderzając się z obiektami przekazują im swój pęd, czyli powodują odpychanie ... mianowicie promieniowanie mikrofalowe tła (CMB) - 'malutkie fale' elektromagnetycznego szumu termicznego - dzięki zasadzie ekwipartycji energii, stopnie swobody pola EM wyrównują temperaturę, czyli średnią zawartą w nich energię - do 2.725K - co wg. wikipedii sumuje się do 6*10^-5 oczekiwanej energii wszechświata ...

Mało? No ale mamy przecież więcej oddziaływań i odpowiadających im pól - grawitacyjne, słabe, silne - które jest dużo trudniej bezpośrednio obserwować ... ale w pewien bardzo słaby sposób te pola oddziaływają jednak między sobą, czyli przez okres życia wszechświata część ich stopni swobody też powinno wyrównać temperaturę, np. do tych 2.725K - może dając wymaganą 'ciemną energię'...

Niektóre stopnie swobody mogą wymagać aktywnych regionów do stermalizowania, tak że dzieje się to tylko w pobliżu galaktyk - zwiększając ich masę w postaci halo np. dla soczewkowania grawitacyjnego - czyli zachowując się dokładnie jak to czego oczekują od 'ciemnej materii' ...

 

Szukają jakichś egzotycznych wyjaśnień, cząstek .. a zupełnie nie widziałem żeby chociaż próbowali rozważać proste i wręcz oczekiwane wyjaśnienie - że te wszystkie 'ciemne byty' to po prostu szum termiczny ...

 

Hmm, jakkolwiek Twoje podejście jest ciekawe, to może są jakieś właściwości ciemnej materii, które wykluczają jej tożsamość z owym "szumem termicznym"? W każdym razie mi też trudno uwierzyć, żeby nikt na coś takiego wpadł... z drugiej strony, wiele razy tak bywało w historii ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niestety Nauka to nie jest tylko idealistyczne szukanie prawdy, ale jednak niezwykle skomplikowane zjawisko społeczne ...

No i na przykład ciemną energię uparcie próbują wepchać w 'największą pomyłkę Einsteina' - czyli stałą kosmologiczną: coś jakby oczekiwaną krzywiznę czasoprzestrzeni ...

Podczas gdy to nie może być ostateczna odpowiedź - OTW jest teorią makroskopową: uśrednia - jest teorią efektywną ... czyli jeśli chcielibyśmy ją kiedyś połączyć z mikroskopową, musimy też znaleźć tam konkretny odpowiednik dla tej stałej kosmologicznej ...

A co do 'ciemnej materii' ... mamy kolejne próby poszukiwań nowych cząstek MONDów itd które nic nie znajdują ... może coś podobnego powinno powstawać w zderzaczach ... poza tym jednak powinna mieć niezerową lepkość (zapadać się grawitacyjnie), oddziaływać/akumulować się w centrach gwiazd ...

... więc może to jednak nie cząstki, tylko coś naturalnego dla każdego rodzaju pól - szum ... tyle że jest to wbrew standardowemu paradygmatowi ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Któż by się spodziewał, że kanapka z wołowiną może stać się przedmiotem dyskusji podczas uchwalania budżetu NASA przez Izbę Reprezentantów, a w jej sprawie będzie wypowiadał się sam szef NASA, James Webb (tak, tak, ten od Teleskopu Webba)? A jednak...
      Misja Gemini III (23 marca 1965) była pierwszą załogową misją w ramach projektu Gemini i 7. amerykańską misją załogową w historii. Udział w niej wzięli Virgil „Gus” Grissom i John Young. Trwała niecałe 5 godzin, ale w jej ramach NASA chciała przetestować m.in. system wyżywienia astronautów dla planowanych dłuższych misji. Astronauci mieli sprawdzić szczelność plastikowych torebek z liofilizowaną żywnością, system dostarczania wody do torebek, system pozbywania się śmieci.
      Już podczas treningu na Ziemi Grissom narzekał na okropny smak kosmicznego jedzenia. Sam Young określał niektóre dania jako „ledwie możliwe do przełknięcia”, a jeszcze inny astronauta opisywał posiłki serwowane załogom misji Gemini jako „dziwaczne”. Jedzenie było tak okropne, że podczas naziemnego treningu, który odbywał się m.in. w panamskiej dżungli, przez dwa pierwsze dni astronauci woleli w ogóle nie jeść. Trzeciego dnia pokonał ich głód. Sytuację pogarszał fakt, że liofilizowaną masę musieli najpierw nawodnić zimną wodą. Z ciepłą dałoby się to jeszcze jakoś przełknąć. Ale na pokładzie była tylko zimna.
      Young postanowił zrobić przyjemność bardziej doświadczonemu koledze. Przed startem poprosił innego astronautę, Waltera Schirrę, o kupno w pobliskim barze kanapki z marynowaną wołowiną. Gdy Grissom i Young szli w kierunku stanowiska startowego, Schirra podał Youngowi kanapkę, a ten schował ją do kieszeni skafandra.
      Dwie godziny po starcie Young miał za zadanie rozpocząć eksperyment z żywnością. Wyjął więc kanapkę z kieszeni i zaproponował ją swojemu dowódcy. To, co działo się w kabinie, zarejestrowały systemy komunikacji z Ziemią. Young zapytał Grissoma, czy chce. Grissom zapytał, co to i skąd to jest, na co Young odpowiedział, że zabrał ze sobą. Jednak gdy Grissom ugryzł kanapkę poczuł w ustach okruszki. Schował więc kanapkę do kieszeni, by okruszki nie zaczęły unosić się w kabinie.
      Dwa dni później, podczas konferencji prasowej, na której zgromadzili się dziennikarze z całego świata, padło pytanie o kanapkę. Young wydawał się zaskoczony. Najpierw zapytał, skąd dziennikarz o tym wie, a potem wybuchnął śmiechem i stwierdził, że Grissom ją zjadł.
      Astronauta z pewnością nie spodziewał się, że jego kanapką zajmie się niezwykle poważne grono. Dnia 5 kwietnia 1965 roku podkomitecie Izby Reprezentantów, który był częścią komitetu decydującego o wydatkowaniu pieniędzy budżetowych, trwała m.in. dyskusja na temat kolejnego budżetu NASA.
      Dyskusja zeszła na program Gemini. W pewnym momencie deputowany George E. Shipley zapytał dyrektora NASA, Jamesa Webba, dlaczego Agencja zmniejsza finansowanie programu. Odpowiedzi udzielił wicedyrektor ds. misji załogowych, George Mueller, który wyjaśnił, że w związku z zakończeniem testów naziemnych spadły też koszty misji.
      W pewnym momencie Shipley stwierdził: To bardzo udany program. Proszę mi powiedzieć o ostatniej misji oraz o kanapce, która znalazła się na pokładzie. Czy Pan to zatwierdził? [...] Myślę, że po wydaniu takich pieniędzy i przeznaczeniu takiej ilości czasu, wniesienie na pokład pojazdu kanapki jest czymś niewłaściwym. [...] Czytałem artykuł, z którego wynikało, że okruszki z kanapki latały po całej kabinie. Wiem, ze wszystko sterylizujecie i dokładnie czyścicie, że pojazd jest niemal jak sala operacyjna, a tutaj ktoś wnosi kanapkę. Co Pan o tym myśli?.
      Pomiędzy Shipleyem a urzędnikami NASA wywiązała się utarczka słowna, którą przerwał jeden z deputowanych pytaniem, czy kanapka zagroziła powodzeniu misji. Przedstawiciele NASA zapewnili, że nie. W końcu włączył się w to dyrektor Webb, który przyznał Shipleyowi rację, że takie rzeczy nie powinny mieć miejsca. Dodał, że program kosmiczny jest zbyt ważny, by można było pozwolić astronautom na samodzielne decydowanie, co mogą ze sobą zabrać.
      Webb miał rację, gdyż narażenie na niebezpieczeństwo dopiero rozwijającego się programu załogowych misji kosmicznych mogłoby stanowić poważne utrudnienie w realizacji tak ważnego celu, jakim było lądowanie człowieka na Księżycu. Szczególnie w obliczu ostrej rywalizacji ze Związkiem Radzieckim.
      Od czasu misji Gemini IV NASA wdrożyła ściślejsze reguły, zgodnie z którymi każdy astronauta ma obowiązek przedstawić do akceptacji listę przedmiotów, jakie chce ze sobą zabrać. Zabronione są kanapki czy ciężkie przedmioty z metalu.
      Pomimo krytycznej uwagi dyrektora Webba, Young nie dostał nawet nagany za swoje zachowanie. A kanapka nie przeszkodziła mu w jego rozwijającej się i – jak się z czasem okazało – wyjątkowej karierze. Był pierwszym astronautą w historii, który poleciał w kosmos sześciokrotnie (2xGemini, 2xApollo, 2xSTS), pierwszym dowódcą promu kosmicznego i przez 13 lat był dyrektorem Astronaut Office, które zarządza astronautami, a szef biura osobiście decyduje, kto zostanie dowódcą, pilotem czy specjalistą danej misji. Ciekawe, czy w tej roli uczulał swoich młodszych kolegów, by nie brali ze sobą kanapek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pełniący obowiązki administratora NASA Sean Duffy, wydał dyrektywę, której celem jest przyspieszenia budowy reaktora atomowego na powierzchni Księżyca. Agencja niejednokrotnie prowadziła prace nad reaktorami służącymi eksploracji kosmosu. Dotychczas żaden nie przyniósł oczekiwanych rezultatów. Administracja prezydenta Trumpa – w obliczu rosnącej konkurencji ze strony Chin i Rosji – chce wreszcie doprowadzić tę kwestię do końca.
      Chiny i Rosja mają ambitne plany. Chcą do połowy lat 30. wybudować w pobliżu bieguna południowego Księżyca stację zasilaną energią jądrową. Biegun południowy znajduje się też w kręgu zainteresowań USA, które chcą w 2027 roku wysłać tam misję załogową. W tamtym regionie znajdują się wiecznie zacienione kratery, zawierające zamarzniętą wodę, którą można wykorzystać zarówno do picia, jak i do produkcji paliwa.
      Prezydent Trump już w czasie swojej pierwszej kadencji naciskał na zorganizowanie załogowej misji na Księżyc. W 2022 roku NASA, zainspirowana częściowo polityką byłego już wówczas prezydenta, prowadziła projekt, w ramach którego trzy firmy otrzymały po 5 milionów dolarów na opracowanie koncepcji niewielkiego, 40-kilowatowego reaktora atomowego o masie nie przekraczającej 6 ton.
      Projekt Duffy'ego jest bardziej ambitny. Reaktor ma mieć moc co najmniej 100 kW i być gotowy do wystrzelenia w 2029 roku. Teraz NASA ma 30 dni na wyznaczenie urzędnika, który będzie nadzorował cały projekt i 60 dni na opublikowanie oferty dla partnerów.
      Powstanie takiego reaktora na Księżycu może pozwolić też USA de facto na przecięcie niewielkiej części Srebrnego Globu. Traktat o przestrzeni kosmicznej zabrania co prawda jakiemukolwiek państwu zawłaszczania jakiegokolwiek fragmentu przestrzeni kosmicznej czy ogłaszania swojego zwierzchnictwa nad nim, jednak ten sam traktat mówi, o konieczności poszanowania uzasadnionych interesów innych państw. To zaś może oznaczać, że w pewnej odległości od takiego reaktora inne państwa nie będą mogły prowadzić żadnej działalności mogącej utrudnić jego działanie. De facto mogłaby powstać w jego pobliżu wyłączna strefa zarządzana przez USA.
      Wielu ekspertów wątpi, czy rok 2029 jest realistycznym terminem wysłania na Księżyc reaktora atomowego. Tym bardziej, że – ich zdaniem – zorganizowanie misji załogowej w 2027 roku też jest zbyt ambitnym celem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ciemna materia, hipotetyczna materia, która ma stanowić 85% masy kosmosu, wciąż nie została znaleziona. Nie wiemy, z czego się składa, a przekonanie o jej istnieniu pochodzi z obserwacji efektów grawitacyjnych, których obecności nie można wyjaśnić zwykłą materią. Dlatego też co jakiś czas pojawiają się hipotezy opisujące, z czego może składać się ciemna materia. Jedną z nich przedstawili właśnie na lamach Physical Review Letters dwaj uczeni z Dartmouth College. Ich zdaniem ciemna materia może być zbudowana z niemal bezmasowych relatywistycznych cząstek, podobnych do światła, które w wyniku zderzeń utworzyły pary, straciły energię, a zyskały olbrzymią masę.
      Ciemna materia rozpoczęła istnienie jako niemal bezmasowe relatywistyczne cząstki, niemal jak światło. To całkowita antyteza tego, jak się obecnie postrzega ciemną materię – to zimne grudki nadające masę galaktykom. Nasza teoria próbuje wyjaśnić, jak przeszła ona ze światła do grudek, mówi profesor fizyki i astronomii Robert Caldwell. Jest on współautorem badań przeprowadzonych z magistrantem fizyki i matematyki Guanmingiem Liangiem.
      Po Wielkim Wybuchu wszechświat zdominowany był przez gorące szybko poruszające się cząstki podobne do fotonów. W tym chaosie olbrzymia liczba cząstek utworzyła pary. Zgodnie z ich hipotezą, cząstki były przyciągane do sobie dzięki temu, że ich spiny były zwrócone w przeciwnych kierunkach. Utworzone pary schładzały się, a nierównowaga ich spinów prowadziła do gwałtownej utraty energii. W wyniku tego procesu powstały zimne ciężkie cząstki, które utworzyły ciemną materię. Właśnie ten spadek energii, który wyjaśniał przejście z wysokoenergetycznych gorących cząstek do nierównomiernie rozłożonych zimnych grudek, jest najbardziej zaskakującym efektem działania zastosowanego przez uczonych modelu matematycznego.
      To przejście fazowe pozwala na wyjaśnienie olbrzymiej ilości ciemnej materii we wszechświecie. Autorzy badań wprowadzają w swojej teorii teoretyczną cząstkę, która miała zainicjować przejście do cząstek ciemnej materii. Jednak nie jest to zjawisko nieznane. Wiadomo, że cząstki subatomowe mogą przechodzić podobne zmiany. Na przykład w niskich temperaturach dwa elektrony mogą utworzyć pary Coopera. Zdaniem Caldwella i Lianga to dowód, że ich hipotetyczne cząstki również mogłyby zostać skondensowane do ciemnej materii.
      Poszukaliśmy w nadprzewodnictwie wskazówek, czy pewne interakcje mogą prowadzić do tak gwałtownego spadku energii. Pary Coopera to dowód, że taki mechanizm istnieje, mówi Caldwell. Liang zaś obrazowo porównuje takie przejścia jako zamianę od gorącego espresso do owsianki.
      Badacze zapewniają, że ich model matematyczny jest prosty. Na jego podstawie można przypuszczać, że wspomniane cząstki będzie widać w mikrofalowym promieniowaniu tła (CMB). Zdaniem naukowców, można go będzie przetestować już wkrótce, dzięki obecnie prowadzonym i przyszłym badaniom CMB.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Administracja Donalda Trumpa chce obniżyć przyszłoroczny budżet NASA aż o 20%. Obecny budżet Agencji to rekordowe 25 miliardów USD. Biały Dom proponuje, by w przyszłym roku podatkowym, który rozpoczyna się 1 października 2025, było to 20 miliardów dolarów. Większość cięć ma dotyczyć Dyrektoriatu Misji Naukowych (SMD), którego praca skupia się na czterech szeroko pojętych dziedzinach: nauk o Ziemi, nauk o planetach, naukach o Słońcu oraz astrofizyce. SMD, którego tegoroczny budżet to 7,5 miliarda USD, miałby w przyszłym roku otrzymać 3,9 USD.
      Zgodnie z propozycją Białego Domu budżet na astrofizykę miałby zostać zmniejszony z 1,5 miliarda do 487 milionów, czyli o 68%. Podobnie duża redukcja miałaby dotknąć wydziału odpowiedzialnego za badanie Słońca. Kwota na nauki o Ziemi ma zostać zmniejszona o ponad 50%, do 1,033 miliarda, a cięcia na nauki o planetach mają wynieść 30%, budżet tego wydziału miałby zamknąć się kwotą 1,929 miliarda dolarów.
      Biały Dom chce utrzymać istniejące misje, takie jak Teleskop Kosmiczny Hubble'a czy Teleskop Kosmiczny Jamesa Webba, ale nie chce przeznaczyć ani dolara na wyczekiwany przez światową naukę Nancy Grace Roman Space Telescope, który miałby uzupełnić oba urządzenia. To w pełni złożony teleskop kosmiczny, którego historia rozpoczęła się od niezwykłego prezentu od wywiadu, a który ma zostać wystrzelony w 2027 roku. Zresztą w przesłanych NASA dokumentach jest wprost mowa o tym, że nie będzie finansowania żadnych innych teleskopów.
      Inne znaczące cięcia, proponowane przez Trumpa i jego ludzi to zakończenie finansowania misji Mars Sample Return – w ramach której na Ziemię mają trafić próbki pobrane na Marsie przez łazik Perseverance – oraz rezygnacja z misji DAVINCI na Wenus. Prawdopodobnie administracja Trumpa chciałaby zamknąć Goddard Space Flight Center.
      Już w ubiegłym miesiącu amerykańskie media informowały, że Biały Dom chce o połowę zmniejszyć finansowanie programów naukowych prowadzonych przez NASA. Jeszcze niedawno p.o. administratora NASA Janet Petro komentowała, że to plotki pochodzące z niewiarygodnych źródeł. Teraz do NASA Biały Dom wysłał dokumenty w sprawie tych cięć.
      Po otrzymaniu takich dokumentów NASA ma zwykle 72 godziny, by się z nimi zapoznać i zgłosić swoje uwagi. Następnie propozycja Białego Domu, z ewentualnymi modyfikacjami związanymi z uwagami NASA, trafia do oficjalnej prezydenckiej propozycji budżetowej na przyszły rok. Dokument ten jest jawny. Powinien zostać opublikowany w ciągu 4–6 tygodni.
      Budżet państwa proponowany przez Biały Dom jest punktem wyjścia do prac budżetowych w Kongresie. Każda z izb ma własny komitet budżetowy. Kongres nie jest zobowiązany do przyjęcia żadnej z propozycji Białego Domu. Jednak, jako że prezydent musi ostatecznie podpisać każdą ustawę proponowaną przez Kongres, nie zdarza się, by propozycje budżetowe Białego Domu zostały całkowicie zignorowane.
      Już teraz można przewidzieć, że przynajmniej część cięć dotyczących NASA spotka się z mocnym sprzeciwem w Kongresie. Problem jednak w tym, że jeśli w Kongresie prace nad budżetem będą się przeciągały – a często tak się dzieje – to po 1 października Biały Dom mógłby wymusić na agencjach federalnych wydatkowanie pieniędzy według własnej propozycji budżetowej. Jednak na takie działanie musi zgodzić się Kongres.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 1878 roku pewien utalentowany muzycznie student fizyki z Uniwersytetu Monachijskiego zapytał swojego wykładowcę, szanowanego profesora von Jolly, czy dobrze wybrał kierunek studiów. Ten odpowiedział mu, że lepiej by zrobił, gdyby studiował muzykę, gdyż fizyka jest niemal w pełni rozwiniętą dziedziną nauki i nie pozostało w niej praktycznie nic do odkrycia. Student nazywał się Max Planck i 20 lat później położył podwaliny pod mechanikę kwantową.
      Obecni wykładowcy fizyki z pewnością nie ośmieliliby się powiedzieć studentom, by zajęli się czymś innym. Na pewno zaś nie w kontekście „końca fizyki”. Mogliby raczej powtórzyć za Sokratesem „wiem, że nic nie wiem”. I właśnie o tym traktuje „Ciemna materia i ciemna energia. Tajemnicze 95% wszechświata” Briana Clegga.
      Autor zaczyna od koncepcji zaproponowanej przez Arystotelesa i błyskawiczne przeskakuje do początku XX wieku. Nie jest to bowiem książka o historii rozwoju ludzkiej wiedzy na temat wszechświata, a o dziejach naszej niewiedzy. O tym, skąd się wzięła ciemna materia i ciemna energia oraz jak te koncepcje się rozwijały. To niezwykle wciągająca opowieść o naukowcach, ich pracy, odkryciach i sporach. O tym co wiedzą, a co im się wydaje, że wiedzą. A także o tym, jakie psikusy potrafią sprawić gwiazdy, galaktyki, pył międzygalaktyczny i większe struktury w kosmosie. Na jej łamach spotkamy najwybitniejsze nazwiska fizyki – wspomnianego już Plancka, Zwicky'ego, Hoyle'a, Einsteina, Hubble'a i innych. Dowiemy się, jak pracowali, co badali i jak budowali nasze obecne wyobrażenie o wszechświecie.
      Clegg potrafi wciągnąć czytelnika w opowieść. Dzięki niemu możemy lepiej zrozumieć nie tylko koncepcje ciemnej materii i ciemnej energii, ale też dowiedzieć się, jak niezwykle skomplikowane problemy stoją przed kosmologią i czemu służą niesamowite instrumenty badawcze, których nigdy zbyt wiele.
      I gdy już czytelnikowi wydaje się, że zaczął rozumieć, gdy rwie się, by dowiedzieć się jeszcze więcej o ciemnej materii i ciemnej energii, Clegg – niczym obuchem – wali go w głowę MOND-em. Bo... może ciemna materia i energia nie istnieją? Sprawdźcie zresztą sami.
      Książka „Ciemna materia i ciemna energia. Tajemnicze 95% wszechświata” Briana Clegga miała wczoraj premierę. Wydał ją Helion, a my zostaliśmy jej patronem medialnym. Teraz możecie ją kupić z 20-procentowym rabatem.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...