Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Najnowsze badania naukowców z USA pokazują, że jeden z gatunków rekinów – ostronos atlantycki (Isurus oxyrinchus) – dysponuje elastycznymi łuskami, które ułatwiają wykonywanie ostrych skrętów przy dużych szybkościach. Szanse potencjalnej zdobyczy na ucieczkę są naprawdę mizerne, zważywszy że rekin mknie z maksymalną prędkością nawet 97 km/h!

Ostronosy dokonują tego właśnie dzięki przypominającym zęby łuskom, które pomagają im kontrolować oderwanie przepływu (w innym razie turbulencje i różnice ciśnienia wywołują tarcie spowalniające szybko poruszające się obiekty, np. statki, samoloty czy nasze rekiny). Jak podkreśla współpracująca z zespołem z Uniwersytetu Południowej Florydy (USF) i Mote Marine Laboratory dr Amy Lang of the University of Alabama, oderwanie przepływu zmniejsza nie tylko prędkość, ale i stabilność.

Jeśli przyjrzeć się skórze zwierząt, widać, że nie jest ona gładka i pokrywają ją wzory. Dlaczego? Jednym z powszechnych zastosowań powierzchniowych wzorów jest kontrolowanie przepływu [powietrza, wody itp.]. Spójrzmy na wgłębienia piłeczki golfowej, które pomagają jej polecieć dalej. Sądzimy, że łuski szybko pływających rekinów służą temu samemu celowi – kontrolowaniu oderwania przepływu.

W oparciu o pomiary w czasie eksperymentów, kiedy to biolodzy zmieniali ciśnienie oddziałujące na skórę martwych ostronosów, i modelując łuski rekinów, zespół Lang stwierdził, że podstawy łusek ostronosów są w miejscu przyczepu do skóry cieńsze niż na szczycie. Zwężenie zezwala na skręcenie o 60 stopni lub więcej.

Co ważne, zębopodobne łuski znajdują się na ciele wyłącznie tam, gdzie z największym prawdopodobieństwem dochodzi do oderwania przepływu, czyli np. po bokach za skrzelami. Amerykanie mają nadzieję, że badając dalej zjawisko falowania wyrostkowatymi łuskami, uda się ulepszyć projekty różnych urządzeń i pojazdów, np. turbin wiatrowych czy łopat helikopterów.

Lang uważa, że ostronosy atlantyckie wyewoluowały, by być oceanicznymi odpowiednikami gepardów. Muszą się szybko poruszać, jeśli chcą upolować swój ulubiony smakołyk – tuńczyka. Gdy ryba przebija się przez wodę, w pewnych miejscach wokół jej ciała ciecz zaczyna się poruszać w odwrotnym kierunku niż główny nurt wody. Na szczęście zostaje ona przechwycona przez zwężające się łuski, nie dopuszczając do uogólnionego oderwania przepływu wokół ciała rekina.

Share this post


Link to post
Share on other sites
zważywszy że rekin mknie z maksymalną prędkością nawet 97 km/h![/size] 

Pełny szacun, i do tego w wodzie (tyle to nawet rowerzysta z górki nie wyciągnie).

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dotychczas sądzono, że to po prostu bakterie akumulujące się jedna pod drugiej na naszych zębach powodują próchnicę, mówi mikrobiolog i dentysta Huyn Koo z University of Pennsylvania. To jednak błędny obraz. Koo jest współautorem badań, z których wynika, że bakterie i grzyby tworzą wzajemnie wspomagające się społeczności, które „spacerują”, a nawet „skaczą” po zębach.
      Znajdujące się na zębach mikroorganizmy żywią się tymi samymi cukrami, co my i wydzielają kwasy, które uszkadzają szkliwo, wywołując próchnicę. Dotychczas jednak mieliśmy dość uproszczony obraz tego zjawiska. Wiedzieliśmy, że kolonizacja powierzchni przez mikroorganizmy to pierwszy niezbędny krok, ku pojawieniu się biofilmu, który chroni mikroorganizmy przed szkodliwym wpływem czynników zewnętrznych.
      Uczeni z Pennsylvanii zbadali ślinę pobraną od dzieci w wieku 12–36 miesięcy, u których występowała poważna próchnica. Badania ujawniły, że u takich dzieci występują zgrupowania bakterii z gatunku Streptococcus mutans i grzybów z gatunku Candida albicans. Takich zgrupowań nie znaleziono w ślinie dzieci o zdrowszych zębach. Jednak największym zaskoczeniem było spostrzeżenie, że zgrupowania takie są zdolne do złożonych ruchów.
      Komórki bakteryjne znajdowały się wewnątrz zgrupowania, zapewniając całości przyczepność. Z kolei większe, podobne do laski komórki grzybów zgromadzone były na zewnątrz, tworząc „kończyny”, przesuwające całość do przodu podczas wzrostu. Gdy dwa takie bakteryjno-grzybiczne zgrupowania się spotkały, dochodziło do ich połączenia. Tego typy zgrupowania rosły szybciej i były bardziej odporne na mechaniczne próby usunięcia i na oddziaływanie chemikaliów niż osobno żyjące grzyby czy bakterie.
      Autorzy badań chcą teraz sprawdzić, kto jest najbardziej narażony na pojawienie się zgrupowań grzybiczno-bateryjnych i jak można je zwalczać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Z im większą prędkością dwie powierzchnie metalowe przesuwają się po sobie, tym bardziej się zużywają. Okazało się jednak, że przy bardzo dużych prędkościach, porównywalnych z prędkością pocisku wystrzeliwanego pistoletu, proces ten ulega odwróceniu. Szybszy ruch powierzchni prowadzi do ich wolniejszego zużycia.
      Gdy dwie metalowe powierzchnie ześlizgują się po sobie, zachodzi wiele złożonych procesów. Krystaliczne regiony, z których zbudowane są metale, mogą ulegać deformacjom, pęknięciom, mogą skręcić się czy nawet zlać. Występuje tarcie i niszczenie powierzchni. Ten niepożądany proces powoduje, że urządzenia się zużywają oraz ulegają awariom. Dlatego też ważne jest, byśmy lepiej zrozumieli zachodzące wówczas procesy. Podczas badań nad tym zjawiskiem naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Austriackiego Centrum Doskonałości Tribologii dokonali zaskakującego, sprzecznego z intuicją odkrycia.

      W przeszłości tarcie mogliśmy badać tylko w czasie eksperymentów. W ostatnich latach dysponujemy superkomputerami na tyle potężnymi, że możemy w skali atomowej modelować bardzo złożone procesy zachodzące na powierzchniach materiałów, mówi Stefan Eder z TU Wien. Naukowcy modelowali różne rodzaje metalowych stopów. Nie były to doskonałe kryształy, ale powierzchnie bliskie rzeczywistości, złożone niedoskonałe struktury krystaliczne. To bardzo ważne, gdyż te wszystkie niedoskonałości decydują o tarciu i zużywaniu się powierzchni. Gdybyśmy symulowali doskonałe powierzchnie miałoby to niewiele wspólnego z rzeczywistością, dodaje Eder.
      Z badań wynika, że przy dość niskich prędkościach, rzędu 10-20 metrów na sekundę, zużycie materiału jest niewielkie. Zmienia się tylko zewnętrzna jego warstwa, warstwy głębiej położone pozostają nietknięte. Przy prędkości 80–100 m/s zużycie materiału, jak można się tego spodziewać, wzrasta. Stopniowo wchodzimy tutaj w taki zakres, gdzie metal zaczyna zachowywać się jak miód czy masło orzechowe, wyjaśnia Eder. Głębiej położone warstwy materiału są ciągnięte w kierunku ruchu metalu przesuwającego się po powierzchni, dochodzi do całkowitej reorganizacji mikrostruktury.
      Później zaś na badaczy czekała olbrzymia niespodzianka. Przy prędkości ponad 300 m/s zużycie ocierających się o siebie materiałów spada. Mikrostruktury znajdujące się bezpośrednio pod powierzchnią, które przy średnich prędkościach były całkowicie niszczone, pozostają w większości nietknięte. To zaskakujące dla nas i wszystkich zajmujących się tribologią. Jednak gdy przejrzeliśmy literaturę fachową okazało się, że obserwowano to zjawisko podczas eksperymentów. Jednak nie jest ono powszechnie znane, gdyż eksperymentalnie bardzo rzadko uzyskuje się tak duże prędkości, dodaje Eder. Wcześniejsi eksperymentatorzy nie potrafili wyjaśnić, dlaczego tak się dzieje. Dopiero teraz, dzięki symulacjom komputerowym, można pokusić się o bardziej dokładny opis.
      Analiza danych komputerowych wykazała, że przy bardzo wysokich prędkościach w wyniku tarcia pojawia się duża ilość ciepła. Jednak ciepło to jest nierównomiernie rozłożone. Gdy dwa metale przesuwają się po sobie z prędkością setek metrów na sekundę, w niektórych miejscach rozgrzewają się do tysięcy stopni Celsjusza. Jednak pomiędzy tymi wysokotemperaturowymi łatami znajdują się znacznie chłodniejsze obszary. W wyniku tego niewielkie części powierzchni topią się i w ułamku sekundy ponownie krystalizują. Dochodzi więc do dramatycznych zmian w zewnętrznej warstwie metalu, ale to właśnie te zmiany chronią głębsze warstwy. Głębiej położone struktury krystaliczne pozostają nietknięte.
      Zjawisko to, o którym w środowisku specjalistów niewiele wiadomo, zachodzi w przypadku różnych materiałów. W przyszłości trzeba będzie zbadać, czy ma ono również miejsce przy przejściu z dużych do ekstremalnych prędkości, stwierdza Eder. Bardzo szybkie przesuwanie się powierzchni metalicznych względem siebie ma miejsce np. w łożyskach czy systemach napędowych samochodów elektrycznych czy też podczas polerowania powierzchni.
      Szczegóły badań zostały opublikowane na łamach Applied Materials Today.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed 8000 lat ludzie epoki kamienia ozdabiali siebie i swoje stroje zębami łosia, by w ten sposób lepiej wczuwać się w rytm własnego tańca. Autorka najnowszych badań Riitta Rainio z Uniwersytetu w Helsinkach, stworzyła współczesne wersje tego typu ozdób i pokazała, w jaki sposób były one wykorzystywane. Jako wzorca użyła zabytków znalezionych na stanowisku archeologicznym na wyspie Olenij Południowy na jeziorze Onega.
      Ubranie tego typu grzechotki pozwala lepiej zanurzyć się w dźwięku. Z czasem dźwięk i rytm same prowadzą tancerza", mówi Rainio, która na potrzeby swoich badań przez sześć godzin tańczyła ubrana w grzechotki.
      Naukowcy zbadali następnie ozdoby, które miała na sobie Rainio w czasie tańca i porównali powstałe na nich mikroskopijne ślady ze śladami z zębów łosia ze stanowiska na wyspie Olenij Południowy. Okazało się, że ślady te są bardzo do siebie podobne. Zęby z epoki kamienia miały jednak głębsze ślady. To jednak nie może dziwić, gdyż wówczas ozdoby takie były noszone całymi latami, a nawet dziesięcioleciami.
      Naukowcy nosili też ozdoby na co dzień. Okazało się, że wówczas ślady nie powstawały. Ani spacer ani lekkie podskoki nie spowodowały powstania śladów na zębach. Dopiero intensywny taniec, w czasie którego zęby obijały się o siebie powodował ich powstanie.
      Dotychczas na Olenij Południowy znaleziono ponad 4300 zębów łosi. Naukowcy podejrzewają, że niektóre z ozdób mogły być wykonane nawet z ponad 300 zębów. Petroglify z wyspy sugerują zaś, że przez tysiąclecia łosie odgrywały olbrzymią rolę dla tamtejszych mieszkańców.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z australijskiego Murdoch University donoszą, że duże gatunki rekinów, polujące na tym samym terenie, wypływają na łowy o różnych porach dnia, by lepiej dzielić się zasobami i uniknąć konfliktów. Kierujący badaniami doktorzy Karissa Lear i Adrian Gleiss mówią,że to pierwszy zaobserwowany przypadek morskich drapieżników dzielących się zasobami poprzez polowania o różnych porach dnia.
      To rzadki sposób podziału zasobów w naturze, ale niewykluczone, że w środowisku morskim zdarza się to częściej niż sądzimy. Zaobserwowaliśmy, że sześć dużych gatunków rekinów, żyjących u wybrzeży Florydy, dzieli się zasobami, polując o różnych porach dnia, mówi doktor Lear. Badania wskazują, że rekiny trzymają się ustalonego harmonogramu, co pozwala im harmonijnie koegzystować. To pozwala zarówno zmniejszyć konkurencję, jak i – w przypadku niektórych gatunków – chroni przed padnięciem ofiarą większego gatunku, mówi doktor Gleiss.
      Dużo wskazuje też na to, że czas, w którym poszczególne gatunku polują, jest dyktowany hierarchią. Mniej dominujące drapieżniki muszą zadowolić się mniej optymalnym okresem polowań.
      Podczas badań naukowcy wykorzystali czujniki przyspieszenia, które przyczepili m.in. rekinom tygrysim czy przedstawicielom młotowatych.
      Dzielenie się zasobami może przybierać różne formy, od podziału pokarmu, gdzie poszczególne gatunki żerują na różnych gatunkach roślin i zwierząt poprzez podział przestrzenny, gdzie żerowanie odbywa się na różnym terenie, po podział czasowy, gdy różne gatunki żerują o różnych porach.
      Odkryliśmy, że żarłacze tępogłowe są najbardziej aktywne o świcie, rekiny tygrysie w środku dnia, żarłacz brunatny żeruje po południu, żarłacz czarnopłetwy wybiera się na łowy wieczorem, a głowomłot tropikalny i największy z głowomłotów, Sphyrma mokarran, polują w nocy i są jedynym gatunkami, u których zaobserwowano zbieganie się szczytu aktywności.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niektórzy ludzie odczuwają silny ostry ból zębów podczas spożywania zimnych posiłków. Teraz międzynarodowy zespół naukowy odkrył, że za to nieprzyjemne uczucie odpowiedzialny jest kanał jonowy TRPC5 znajdujący się w wytwarzających zębinę komórkach zwanych odontoblastami. Kiedy więc mamy odsłoniętą zębinę i zetknie się z nią chłodny pokarm lub napój, obecne tam komórki – pełne TRC5 – odbierają wrażenie chłodu i wysyłają sygnał do mózgu.
      Gdy już wiemy, jaką molekułę należy wziąć na celownik, możemy opracować odpowiednie leczenie, mówi elektrofizjolog doktor Katharina Zimmermenn z Uniwerystetu Fryderyka i Aleksandra w Erlangen i Norymberdze. Odkryliśmy, że odontoblasty, odpowiedzialne za kształt zęba, są też odpowiedzialne za uczucie zimna. [...] Teraz wiemy, że zakłócenie funkcji odczuwania zimna pozwoli na pozbycie się bólu, dodaje patolog Jochen Lennerz dyrektor Center for Integrated Diagnostics w Massachusetts General Hospital.
      Odkrycie pomaga też wyjaśnić, dlaczego stary sposób na ból zębów, olej goździkowy, pomaga zmniejszyć ból zębów wywołany zimnem. Olej ten zawiera bowiem składnik blokujący proteinę odpowiedzialną za odczuwanie zimna.
      Trzeba tutaj zauważyć, że mowa jest konkretnym bólu mającym konkretną przyczynę. Ból zębów z powodu zimna może pojawiać się nie tylko wówczas, gdy mamy odsłoniętą zębinę. Jego przyczyną może być też też związane ze spowodowanymi wiekiem problemami z dziąsłami, a niektórzy pacjenci nowotworowi leczeni preparatami na bazie platyny są stają się niezwykle nadwrażliwi na zimno na całym ciele.
      Odkrycie roli kanału TRC5 w uczuciu bólu zębów pod wpływem zimna nie wyklucza też innych jego przyczyn. Jedna z głównych hipotez dotyczących tego zjawiska mówi, że w niewielkich kanałach wewnątrz zębów znajduje się płyn, który przemieszcza się pod wpływem zmian temperatury i czasem nerwy odbierają ten ruch, przesyłając sygnały bólowe. Hipotezy tej wciąż nie można wykluczyć.
      Przed około 15 laty Zimmermann pracowała w zespole, który odkrył, że kanał jonowy TRPC5 jest bardzo wrażliwy na zimno. Uczeni nie wiedzieli wówczas, gdzie może odgrywać on zasadniczą rolę, gdyż myszy pozbawione na skórze TRPC5 nadal odczuwały zimno. Pomysł na przyjrzenie się zębom zrodził się podczas wspólnego obiadu, gdy naukowcy zastanawiali się, jaki jeszcze organ ciała odczuwa zimno. Ktoś przypomniał wówczas o zębach.
      Eksperymenty na myszach oraz na zapisy aktywności elektrycznej wypreparowanych nerwów potwierdziły, że użycie blokerów TRPC5 znacząco zmniejszyło reakcję nerwów na uczucie zimna. Mamy teraz dowód, że czujnik temperatury, jakim jest TRCP5, przesyła sygnał o zimnie za pośrednictwem odontoblastów, wywołując ból i nadwrażliwość na zimno. Może to być sposób organizmu na ochronę zębów przed postępującym niszczeniem, mówi Lennerz.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...