Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Komputerowy wzrok bliski ludzkiemu
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Samochody przeszły długą drogę od momentu wynalezienia pierwszego pojazdu napędzanego silnikiem spalinowym. Na przestrzeni lat ewoluowały one pod względem technologicznym, designu oraz funkcjonalności. Poznaj historię ewolucji samochodów!
Początki motoryzacji – pierwsze pojazdy samobieżne
Współczesne samochody są nowoczesne i naszpikowane zaawansowanymi technologiami. Aż trudno uwierzyć, że prototypy pojazdów samobieżnych napędzane były siłą wiatru. Projekt takiej maszyny był włoski inżynier Roberto Valturio, tematem interesował się także Leonardo da Vinci. Żaglowozy pojawiły się Niderlandach – można je było zobaczyć na tamtejszych drogach już w na początku XVII wieku.
Jednak pierwszy pojazd samobieżny, który był zdolny do przewozu osób i dał zalążek współczesnej motoryzacji, pojawił się w roku 1765. Jego konstruktorem był francuski inżynier Nicolas Josepha Cugnot. Maszyna powstała na potrzeby armii i miała pełnić funkcję ciągnika artyleryjskiego.
W ten sposób rozpoczęła się przygoda, która trwa do dzisiaj. Branża samochodowa budzi duże zainteresowanie i generuje ogromne zyski. Wynalazcy sprzed stuleci na pewno nie spodziewali się, jak może ewoluować ich pomysł. Dzięki nim każdy z nas może swobodnie przemieszczać się z miejsca na miejsce. Oczywiście warunkiem jest spełnienie wymogów – posiadanie prawa jazdy, wykonywanie corocznych przeglądów oraz wykupienie obowiązkowej polisy. Aktualne ceny znajdziesz tutaj – kalkulator oc HDI.
Tak powstawały konstrukcje współczesnych samochodów
Jak wspomniano wcześniej, pierwsze próby skonstruowania samochodu we współczesnym rozumieniu sięgają XVIII wieku, kiedy to powstały pojazdy napędzane silnikiem parowym. Jednak prawdziwy przełom nastąpił w 1886 roku, gdy Carl Benz opatentował pierwszy pojazd napędzany silnikiem spalinowym. Był to trójkołowy pojazd nazwany Benz Patent-Motorwagen Nummer 1, który uznawany jest za protoplastę współczesnych samochodów. W 2011 roku akt patentowy został wpisany na listę Pamięć Świata. Jest to projekt pod patronatem UNESCO, który ma chronić najbardziej wartościowe dla ludzkości dokumenty.
W kolejnych latach pojawiały się nowe konstrukcje, takie jak pierwszy seryjnie produkowany samochód Benz Velo z 1894 roku (maksymalna prędkość wynosiła zawrotne 30 km/h) czy Ford Model T, który zrewolucjonizował przemysł motoryzacyjny dzięki wprowadzeniu taśmowej produkcji. Samochody z początku XX wieku charakteryzowały się prostą budową, otwartym nadwoziem i niewielkimi silnikami.
Rozwój technologii i designu w branży motoryzacyjnej
Wraz z upływem czasu samochody stawały się coraz bardziej zaawansowane technologicznie. W latach 20. i 30. XX wieku pojawiły się pierwsze pojazdy z zamkniętym nadwoziem, elektrycznym rozrusznikiem czy hydraulicznymi hamulcami. Zaczęto także zwracać uwagę na design, tworząc bardziej opływowe i eleganckie karoserie.
Lata 50., 60. i 70. to okres rozkwitu motoryzacji, szczególnie w Stanach Zjednoczonych. Powstawały duże, mocne samochody z silnikami V8, bogato wyposażone i efektownie stylizowane. Były to auta typu muscle car i pony car – miały masywną sylwetkę i dużą moc. W Europie dominowały mniejsze, ekonomiczne pojazdy dostosowane do węższych ulic i wyższych cen paliwa.
Samochody współczesne
Obecnie samochody to zaawansowane technologicznie maszyny wyposażone w elektroniczne systemy wspomagające kierowcę, zapewniające wysoki poziom bezpieczeństwa i komfortu. Coraz większą rolę odgrywają kwestie ekologii, stąd dynamiczny rozwój pojazdów z napędem hybrydowym i elektrycznym.
Współczesne trendy w designie samochodów to m.in. dążenie do aerodynamicznej sylwetki, LED-owe oświetlenie, duże alufelgi i muskularne proporcje nadwozia. Jednocześnie producenci starają się wyróżnić swoje modele charakterystycznym wyglądem zgodnym z filozofią marki.
Innowacje i kierunki rozwoju
Branża motoryzacyjna nieustannie poszukuje innowacyjnych rozwiązań, które mają uczynić samochody bardziej przyjaznymi dla środowiska, bezpiecznymi i funkcjonalnymi. Kluczowe kierunki rozwoju to elektromobilność, autonomiczne systemy jazdy czy komunikacja między pojazdami. Coraz większe znaczenie zyskują także usługi mobilności, takie jak car-sharing czy abonamenty na samochody. Zmienia się podejście do własności pojazdu, szczególnie wśród młodszych pokoleń, które chętniej korzystają z elastycznych form użytkowania aut.
Nadal jednak samochody pozostają wyznacznikami statusu – mimo swojej powszechnej dostępności.
Ewolucja pojazdów – niezwykła podróż przez historię
Historia samochodu to fascynująca opowieść o ludzkiej pomysłowości, innowacyjności i dążeniu do ciągłego ulepszania środków transportu. Od pierwszych prymitywnych pojazdów napędzanych silnikiem parowym, przez kultowe modele będące ikonami swoich epok, aż po zaawansowane technologicznie współczesne auta – samochody przeszły ogromną ewolucję.
Dziś stoją one przed nowymi wyzwaniami związanymi z ochroną środowiska, bezpieczeństwem i zmieniającymi się potrzebami użytkowników. Jednak jedno pozostaje niezmienne – samochody nadal są symbolem wolności, niezależności i realizacji marzeń o podróżowaniu, odgrywając istotną rolę w życiu milionów ludzi na całym świecie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ruszasz na urlop? Wiesz, jak przygotować samochód do podróży? Przed wyjazdem w daleką trasę powinieneś dobrze sprawdzić stan techniczny pojazdu, a także zabrać ze sobą odpowiednie akcesoria. Niech nic nie zaskoczy Cię podczas wyjazdu, a na pewno wrócisz wypoczęty!
Jak przygotować samochód na wakacyjną podróż?
Oczywiście każdy samochód powinien być regularnie sprawdzany, nie tylko przed wyjazdami na wakacje. Jednak jak wiemy w praktyce, bywa z tym różnie. Pamiętaj, że kiedy wybierasz się daleko od domu, koniecznie powinieneś przygotować auto do trasy. Zwłaszcza jeśli zabierasz ze sobą rodzinę. Zapewnienie bezpieczeństwa podróżującym bliskim to absolutny priorytet każdego kierowcy. Przygotowanie samochodu nie polega wyłącznie na sprawdzeniu jego stanu technicznego, ale także zabraniu odpowiednich akcesoriów lub narzędzi. Powinieneś także upewnić się, jaki zakres ubezpieczenia obejmuje Twoje auto i podróżujące z Tobą osoby.
Sprawdź pobliski warsztat na trasie Twojej podróży:
https://motointegrator.com/pl/pl/warsztaty
Sprawdzenie stanu pojazdu i krótki serwis przed wyjazdem
Podróże zazwyczaj planowane są z odpowiednim wyprzedzeniem. Upewnij się więc wcześniej w jakim stanie są najważniejsze podzespoły Twojego pojazdu. Sprawdź poziom zużycia klocków hamulcowych, a także stan bieżnika opon. Jeśli cokolwiek budzi Twoje wątpliwości, udaj się do mechanika. Ważne jest także sprawdzenie poziomu płynu chłodniczego i oleju. Jeśli poziom jest minimalny, konieczne będzie ich uzupełnienie. W bagażniku warto wozić także zapasową butelkę oleju i płynu chłodniczego. Nigdy nie wiadomo, co spotka Cię po drodze. Dzięki przygotowaniu zapasu będziesz mógł uzupełnić stan płynów, aby bezpiecznie dojechać do warsztatu samochodowego w razie wycieków. Przed wyjazdem warto także udać się na szybki przegląd do mechanika. Podda weryfikacji także stan zawieszania oraz stan pasków osprzętu, które również lubią niezapowiedziane odmówić posłuszeństwa. Przy okazji warto także odgrzybić i „nabić” klimatyzację. W końcu czeka Cię kilkugodzinna podróż, a lato bywa upalne.
Co zabrać ze sobą w wakacyjną podróż?
Przede wszystkim, sprawdź koło zapasowe. Powinieneś mieć także ze sobą pasujący klucz i lewarek, za pomocą którego możliwe będzie podniesienie auta. Wiele samochodów nie przewiduje już miejsca na koło zapasowe. Wtedy konieczne jest wożenie tak zwanego „zestawu naprawczego” składa się on z pianki wypełniającej ubytki w oponie oraz kompresora, z pomocą którego możliwe jest napompowanie koła. W bagażniku pojazdu koniecznie powinien znaleźć się także trójkąt ostrzegawczy oraz ważna gaśnica samochodowa. Obowiązkowym wyposażeniem, choć często lekceważonym, jest kamizelka odblaskowa, którą powinieneś założyć podczas nieoczekiwanych postojów. W bagażniku powinno się również znaleźć miejsce na apteczkę, mimo, że nie jest ona wymagana w świetle przepisów.
W podróż zabierz także podstawową skrzynkę z narzędziami. Powinny się w niej znaleźć: taśma izolacyjna, opaski zaciskowe, zestaw wkrętaków i kluczy płasko oczkowych i zapasowe żarówki. Choć w nowoczesnych autach niewiele można naprawić samodzielnie, warto mieć takie podstawowe narzędzia. Z ich pomocą możesz naprawić np. bagażnik dachowy. Poza tym przygotuj akcesoria ułatwiające jazdę. Powinien to być uchwyt do telefonu, a także ładowarka samochodowa. Jeśli nie korzystasz z map Google, powinieneś zabrać ze sobą również nawigację GPS. Mogą przydać się również okulary przeciwsłoneczne z polaryzacją, jeśli masz spędzić za kółkiem wiele godzin.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Do końca przyszłego roku w Krakowie stanie jeden z najpotężniejszych superkomputerów na świecie. Akademickie Centrum Komputerowe CYFRONET AGH zostało wytypowane przez Europejkie Wspólne Przedsięwzięcie w dziedzinie Obliczeń Wielkiej Skali (EuroHPC JU) jako jedno z 5 miejsc w Europie, w których zostaną zainstalowane komputery tworzące ogólnoeuropejską sieć przetwarzania danych.
Najpotężniejszym z komputerów sieci będzie JUPITER. To pierwszy w Europie system eksaskalowy – czyli przeprowadzający ponad 1018 operacji zmiennoprzecinkowych na sekundę. Zostanie on zainstalowany w Jülich Supercomputing Centre w Niemczech. Pozostałe cztery maszyny to DAEDALUS, który trafi do Grecji, LEVENTE (Węgry), CASPIr (Irlandia) oraz krakowski EHPCPL.
Przedstawiciele Cyfronetu zapewniają, że projekt maszyny jest na bardzo zaawansowanym stadium. Nie mogą jednak ujawnić szczegółów, gdyż w superkomputerze zostaną wykorzystane technologie, które nie są jeszcze dostępne na rynku, zatem objęte są przez producentów tajemnicą. Zapewniono nas jednak, że nowy superkomputer będzie o rząd wielkości bardziej wydajny od innych polskich superkomputerów i gdy powstanie, prawdopodobnie będzie jednym z 50 najpotężniejszych maszyn na świecie.
Obecnie w Cyfronecie stoi najpotężniejszy superkomputer w Polsce, Athena. Maszyna o mocy 5,05 PFlopa znajduje się na 105. pozycji listy 500 najbardziej wydajnych superkomputerów na świecie i jest jednym z 5 polskich superkomputerów tam wymienionych. Wiadomo, że EHPCPL będzie kilkukrotnie bardziej wydajny od Atheny.
Celem EuroHPC JU jest stworzenie w Europie jednej z najpotężniejszych infrastruktur superkomputerowych na świecie. Już w tej chwili działają maszyny LUMI (151,9 PFlop/s) w Finlandii, MeluXina (10,52 PFlop/s) w Luksemburgu, Karolina (6,75 PFlop/s) w Czechach, Discoverer (4,52 PFlop/s) w Bułgarii i Vega (3,82 PFlop/s) na Słowenii. Budowane są też LEONARDO (Włochy), Deucalion (Portugalia) oraz MareNostrum 5 (Hiszpania). Fiński LUMI to 3. najpotężniejszy superkomputer świata i 3. najbardziej wydajny pod względem energetycznym komputer na świecie. Polska Athena zajmuje zaś wysoką 9. pozycję na liście najbardziej wydajnych energetycznie komputerów świata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Unia Europejska kończy przygotowania do stworzenia „cyfrowego bliźniaka” Ziemi, za pomocą którego z niespotykaną dotychczas precyzją będzie można symulować atmosferę, oceany, lądy i kriosferę. Ma to pomóc zarówno w tworzeniu precyzyjnych prognoz pogody, jak i umożliwić przewidywanie wystąpienia susz, pożarów czy powodzi z wielodniowym, a może nawet wieloletnim wyprzedzeniem.
Destination Earth, bo tak został nazwany projekt, będzie miał też za zadanie przewidywanie zmian społecznych powodowanych przez pogodę czy klimat. Ma również pozwolić na ocenę wpływ różnych polityk dotyczących walki ze zmianami klimatu.
Destination Earth ma pracować z niespotykaną dotychczas rozdzielczością wynoszącą 1 km2. To wielokrotnie więcej niż obecnie wykorzystywane modele, dzięki czemu możliwe będzie uzyskanie znacznie bardziej dokładnych danych. Szczegóły projektu poznamy jeszcze w bieżącym miesiącu, natomiast sam projekt ma zostać uruchomiony w przyszłym roku i będzie działał na jednym z trzech superkomputerów, jakie UE umieści w Finlandii, Włoszech i Hiszpanii.
Destination Earth powstała na bazie wcześniejszego Extreme Earth. Program ten, o wartości miliarda euro, był pilotowany przez European Centre for Medium-Range Weather Forecests (ECMWF). UE zlikwidowała ten program, jednak była zainteresowana kontynuowaniem samego pomysłu. Tym bardziej, że pojawiły się obawy, iż UE pozostanie w tyle w dziedzinie superkomputerów za USA, Chinami i Japonią, więc w ramach inicjatywy European High-Performance Computing Joint Undertaking przeznaczono 8 miliardów euro na prace nad eksaskalowym superkomputerem. Mają więc powstać maszyny zdolne do obsłużenia tak ambitnego projektu jak Destination Earth. Jednocześnie zaś Destination Earth jest dobrym uzasadnieniem dla budowy maszyn o tak olbrzymich mocach obliczeniowych.
Typowe modele klimatyczne działają w rozdzielczości 50 lub 100 km2. Nawet jeden z czołowych modeli, używany przez ECMWF, charakteryzuje się rozdzielczością 9 km2. Wykorzystanie modelu o rozdzielczości 1 km2 pozwoli na bezpośrednie renderowanie zjawiska konwekcji, czyli pionowego transportu ciepła, które jest krytyczne dla formowania się chmur i burz. Dzięki temu można będzie przyjrzeć się rzeczywistym zjawiskom, a nie polegać na matematycznych przybliżeniach. Destination Earth ma być też tak dokładny, że pozwoli na modelowanie wirów oceanicznych, które są ważnym pasem transmisyjnym dla ciepła i węgla.
W Japonii prowadzono już testy modeli klimatycznych o rozdzielczości 1 km2. Wykazały one, że bezpośrednie symulowane burz i wirów pozwala na opracowanie lepszych krótkoterminowych prognoz pogody, pozwala też poprawić przewidywania dotyczące klimatu w perspektywie miesięcy czy lat. Jest to tym bardziej ważne, że niedawne prace wykazały, iż modele klimatyczne nie są w stanie wyłapać zmian we wzorcach wiatrów, prawdopodobnie dlatego, że nie potrafią odtworzyć burz czy zawirowań.
Modele o większej rozdzielczości będą mogły brać pod uwagę w czasie rzeczywistym informacje o zanieczyszczeniu powietrza, szacie roślinnej, pożarach lasów czy innych zjawiskach, o których wiadomo, że wpływają na pogodę i klimat. Jeśli jutro dojdzie do erupcji wulkanicznej, chcielibyśmy wiedzieć, jak wpłynie ona na opady w tropikach za kilka miesięcy, mówi Francisco Doblas-Reyes z Barcelona Supercomputing Center.
Tak precyzyjny model byłby w stanie pokazać np. jak subsydiowanie paliw roślinnych wpływa na wycinkę lasów Amazonii czy też, jak zmiany klimatu wpłyną na ruch migracyjne ludności w poszczególnych krajach.
Działanie na tak precyzyjnym modelu będzie wymagało olbrzymich mocy obliczeniowych oraz kolosalnych możliwości analizy danych. O tym, jak poważne to zadanie, niech świadczy następujący przykład. W ubiegłym roku przeprowadzono testy modelu o rozdzielczości 1 kilometra. Wykorzystano w tym celu najpotężniejszy superkomputer na świecie, Summit. Symulowano 4 miesiące działania modelu. Testujący otrzymali tak olbrzymią ilość danych, że wyodrębnienie z nich użytecznych informacji dla kilku symulowanych dni zajęło im... pół roku. Obecnie w tym tkwi najpoważniejszy problem związany z modelami pogodowymi i klimatycznymi w wysokiej rozdzielczości. Analiza uzyskanych danych zajmuje bardzo dużo czasu. Dlatego też jednym z najważniejszych elementu projektu Destination Earth będzie stworzenie modelu analitycznego, który dostarczy użytecznych danych w czasie rzeczywistym.
Destination Earth będzie prawdopodobnie pracował w kilku trybach. Na co dzień będzie się prawdopodobnie zajmował przewidywaniem wpływu ekstremalnych zjawisk atmosferycznych na najbliższe tygodnie i miesiące. Co jakiś czas, być może raz na pół roku, zajmie się długoterminowymi, obejmującymi dekady, prognozami zmian klimatycznych.
Nie tylko Europa planuje tworzenie precyzyjnych modeli klimatycznych przy użyciu eksaskalowych superkomputerów. Też zmierzamy w tym kierunku, ale jeszcze nie zaangażowaliśmy się to tak mocno, przyznaje Ruby Leung z Pacific Northwest National Laboratory, który jest głównym naukowcem w prowadzonym przez amerykański Departament Energii projekcie modelowania systemu ziemskiego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tegoroczna International Conference for Hight Performance Computing (SC19) nie przyniosła żadnych sensacyjnych informacji na temat TOP500, listy najpotężniejszych komputerów na świecie. Znacznie bardziej interesujące było to, co mówiono o systemach eksaskalowych, których budowa ma rozpocząć się w 2021 roku.
Wielkimi wygranymi są tutaj ADM, Cray i Intel. Już teraz wiadomo, że firmy te będą tworzyły trzy eksaskalowe maszyny, których powstanie sfinansuje Departament Energii. Cray, należący obecnie do HP Enterprise, będzie odpowiedzialny za połączenia we wszystkich wspomnianych superkomputerach. Maszyna eksaskalowa to superkomputery zdolny do wykonania 1 eksaflopsa czyli 1 tryliona (1018) operacji zmiennoprzecinkowych na sekundę.
Budową superkomputera Frontier, który stanie w Oak Ridge National Laboratory, zajmą się AMD i Cray. AMD dostarczy CPU i GPU. Zintegrowanie całości będzie zadaniem Craya. Z kolei maszyna Aurora, przeznaczona dla Argonne National Laboratory, ma zostać zbudowana przez Intela (GPU i GPU) oraz Craya (integracja). Trzeci z planowanych w najbliższych latach amerykańskich systemów eksaskalowych – El Capitán – ma zostać zbudowany przez Craya. Obecnie nie wiadomo, kto dostarczy doń procesorów.
Na pierwszy rzut oka widać, że brakuje w tym towarzystwie dwóch potentatów rynku HPC (High Performance Computing) – IBM-a i Nvidii. Jednak jeśli nawet żadna z tych firm nie będzie zaangażowana w budowę El Capitana, to z pewnością nie zabraknie dla nich pracy na rynku superkomputerów.
Jeszcze przed SC19 odbyła się konferencja zorganizowana przez Intela, na której koncern mówił o kościach, które rozwija na potrzeby Aurory. Wiemy, że zostaną one wykonane w 7-nanometrowym procesie. Nazwa kodowa procesora Xeon dla Aurory to Sapphire Rapids. Jednak uczestników konferencji bardziej zainteresował przyszły intelowski GPU – Xe HPC o nazwie kodowej Ponte Vecchio.
Ponte Vecchio będzie miał wersję specjalnie na rynek HPC. Głównym zadaniem układów GPU przeznaczonych do zastosowań HPC jest przetwarzanie liczb zmiennoprzecinkowych pojedynczej i podwójnej precyzji, jednak nowy GPU Intela ma również wspierać formaty popularne na polu sztucznej inteligencji, takie jak INT8, BFloat16 i FP16. Intel wykorzysta również technologię pakowania układów EMIB, która pozwala na podłączenie GPU do interfejsu HBM (High Bandwidth Memory). Ponadto w Ponte Vecchio znajdziemy technologię Foveros 3D pozwalającą składać procesor na podobieństwo klocków i interkonekt XE Memory Fabric (XEMF), przez co CPU i GPU mają mieć dostęp do superszybkiej pamięci zwanej Rambo cache'em. Dzięki dużej ilości cache'u ma poprawić się skalowalność tak ambitnych projektów jak superkompuery eksaskalowe.
Na potrzeby tych rozwiązań intel tworzy też nowe oprogramowanie oparte na nowym języku programowania Data Parallel C++ (DPC++). Bazuje on na standardzie SYCL z dodanymi przez Intela specyficznymi rozszerzeniami.
Pojedynczy węzeł Aurory będzie zawierał 2 układy Xeon Sapphire Rapids oraz 6 Ponte Vecchio HPC GPU. Trzeba zauważyć, że Intel wziął na siebie bardzo ambitne zadanie. W ciągu dwóch lat musi bowiem mieć gotowe i przetestowane nowe oprogramowanie, nowy GPU wykonany według nowego procesu produkcyjnego i nowej technologii pakowania.
W lepszej sytuacji jest AMD. Maszyna Frontier będzie korzystała z EPYC CPU i Radeon Instinct GPU. Firma już produkuje te kości. Obecnie pracuje nad ROCM, czyli odpowiedzią na CUDA Nvidii. ROCM będzie wspierało Tensor Flow i PyTorch. Obecnie AMD bardzo mocno inwestuje w rozwój tej platformy, a podczas SC19 przedstawiciele firmy zapowiedzieli poszerzenie ofery procesorów EPYC.
Co jeszcze wiemy o przyszłych amerykańskich eksaskalowych komputerach?
Budowana przez Craya maszyna El Capitán będzie stała z Lawrence Livermore National Laboratory. Jej maksymalna wydajność ma przekraczać 1,5 eksaflopsa, a komputer – wyposażony w zaawansowane możliwości modelowania, symulacji i sztucznej inteligencji bazujące na architekturze Shasta – będzie wykorzystywany do zadań związanych z bezpieczeństwem nuklearnym. Na jego zbudowanie przeznaczono 600 milionów USD, a maszyna ma zostać dostarczona pod koniec 2022 roku.
Tworzony przez AMD i Craya Frontier ma ruszyć już w 2021 roku, a jego wydajność ma być wyższa niż 1,5 eksafolopsa. Superkomputer będzie wykorzystywany do wielu zadań związanych m.in. z badaniami nad rozpadem atomowym, badaniami klimatu, zostanie zaprzęgnięty do pracy w dziedzinie biomedycyny i inżynierii materiałowej. Również i on ma kosztować około 600 milionów USD.
Jeśli zaś chodzi o Aurorę, to będzie się on zajmował badaniami nad fuzją jądrową, poszukiwał leków na nowotwory, wykorzystany zostanie przez chemików do badania procesów katalitycznych, wspomoże też nauki z dziedziny neurobiologii czy astrofizyki. Również i na tę maszynę przeznaczono 600 milionów dolarów. Jej wydajność ma przekraczać 1 eksaflops, a komputer ma być gotowy w 2021 roku.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.