Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'superkomputer'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 68 results

  1. Do końca przyszłego roku w Krakowie stanie jeden z najpotężniejszych superkomputerów na świecie. Akademickie Centrum Komputerowe CYFRONET AGH zostało wytypowane przez Europejkie Wspólne Przedsięwzięcie w dziedzinie Obliczeń Wielkiej Skali (EuroHPC JU) jako jedno z 5 miejsc w Europie, w których zostaną zainstalowane komputery tworzące ogólnoeuropejską sieć przetwarzania danych. Najpotężniejszym z komputerów sieci będzie JUPITER. To pierwszy w Europie system eksaskalowy – czyli przeprowadzający ponad 1018 operacji zmiennoprzecinkowych na sekundę. Zostanie on zainstalowany w Jülich Supercomputing Centre w Niemczech. Pozostałe cztery maszyny to DAEDALUS, który trafi do Grecji, LEVENTE (Węgry), CASPIr (Irlandia) oraz krakowski EHPCPL. Przedstawiciele Cyfronetu zapewniają, że projekt maszyny jest na bardzo zaawansowanym stadium. Nie mogą jednak ujawnić szczegółów, gdyż w superkomputerze zostaną wykorzystane technologie, które nie są jeszcze dostępne na rynku, zatem objęte są przez producentów tajemnicą. Zapewniono nas jednak, że nowy superkomputer będzie o rząd wielkości bardziej wydajny od innych polskich superkomputerów i gdy powstanie, prawdopodobnie będzie jednym z 50 najpotężniejszych maszyn na świecie. Obecnie w Cyfronecie stoi najpotężniejszy superkomputer w Polsce, Athena. Maszyna o mocy 5,05 PFlopa znajduje się na 105. pozycji listy 500 najbardziej wydajnych superkomputerów na świecie i jest jednym z 5 polskich superkomputerów tam wymienionych. Wiadomo, że EHPCPL będzie kilkukrotnie bardziej wydajny od Atheny. Celem EuroHPC JU jest stworzenie w Europie jednej z najpotężniejszych infrastruktur superkomputerowych na świecie. Już w tej chwili działają maszyny LUMI (151,9 PFlop/s) w Finlandii, MeluXina (10,52 PFlop/s) w Luksemburgu, Karolina (6,75 PFlop/s) w Czechach, Discoverer (4,52 PFlop/s) w Bułgarii i Vega (3,82 PFlop/s) na Słowenii. Budowane są też LEONARDO (Włochy), Deucalion (Portugalia) oraz MareNostrum 5 (Hiszpania). Fiński LUMI to 3. najpotężniejszy superkomputer świata i 3. najbardziej wydajny pod względem energetycznym komputer na świecie. Polska Athena zajmuje zaś wysoką 9. pozycję na liście najbardziej wydajnych energetycznie komputerów świata. « powrót do artykułu
  2. Unia Europejska kończy przygotowania do stworzenia „cyfrowego bliźniaka” Ziemi, za pomocą którego z niespotykaną dotychczas precyzją będzie można symulować atmosferę, oceany, lądy i kriosferę. Ma to pomóc zarówno w tworzeniu precyzyjnych prognoz pogody, jak i umożliwić przewidywanie wystąpienia susz, pożarów czy powodzi z wielodniowym, a może nawet wieloletnim wyprzedzeniem. Destination Earth, bo tak został nazwany projekt, będzie miał też za zadanie przewidywanie zmian społecznych powodowanych przez pogodę czy klimat. Ma również pozwolić na ocenę wpływ różnych polityk dotyczących walki ze zmianami klimatu. Destination Earth ma pracować z niespotykaną dotychczas rozdzielczością wynoszącą 1 km2. To wielokrotnie więcej niż obecnie wykorzystywane modele, dzięki czemu możliwe będzie uzyskanie znacznie bardziej dokładnych danych. Szczegóły projektu poznamy jeszcze w bieżącym miesiącu, natomiast sam projekt ma zostać uruchomiony w przyszłym roku i będzie działał na jednym z trzech superkomputerów, jakie UE umieści w Finlandii, Włoszech i Hiszpanii. Destination Earth powstała na bazie wcześniejszego Extreme Earth. Program ten, o wartości miliarda euro, był pilotowany przez European Centre for Medium-Range Weather Forecests (ECMWF). UE zlikwidowała ten program, jednak była zainteresowana kontynuowaniem samego pomysłu. Tym bardziej, że pojawiły się obawy, iż UE pozostanie w tyle w dziedzinie superkomputerów za USA, Chinami i Japonią, więc w ramach inicjatywy European High-Performance Computing Joint Undertaking przeznaczono 8 miliardów euro na prace nad eksaskalowym superkomputerem. Mają więc powstać maszyny zdolne do obsłużenia tak ambitnego projektu jak Destination Earth. Jednocześnie zaś Destination Earth jest dobrym uzasadnieniem dla budowy maszyn o tak olbrzymich mocach obliczeniowych. Typowe modele klimatyczne działają w rozdzielczości 50 lub 100 km2. Nawet jeden z czołowych modeli, używany przez ECMWF, charakteryzuje się rozdzielczością 9 km2. Wykorzystanie modelu o rozdzielczości 1 km2 pozwoli na bezpośrednie renderowanie zjawiska konwekcji, czyli pionowego transportu ciepła, które jest krytyczne dla formowania się chmur i burz. Dzięki temu można będzie przyjrzeć się rzeczywistym zjawiskom, a nie polegać na matematycznych przybliżeniach. Destination Earth ma być też tak dokładny, że pozwoli na modelowanie wirów oceanicznych, które są ważnym pasem transmisyjnym dla ciepła i węgla. W Japonii prowadzono już testy modeli klimatycznych o rozdzielczości 1 km2. Wykazały one, że bezpośrednie symulowane burz i wirów pozwala na opracowanie lepszych krótkoterminowych prognoz pogody, pozwala też poprawić przewidywania dotyczące klimatu w perspektywie miesięcy czy lat. Jest to tym bardziej ważne, że niedawne prace wykazały, iż modele klimatyczne nie są w stanie wyłapać zmian we wzorcach wiatrów, prawdopodobnie dlatego, że nie potrafią odtworzyć burz czy zawirowań. Modele o większej rozdzielczości będą mogły brać pod uwagę w czasie rzeczywistym informacje o zanieczyszczeniu powietrza, szacie roślinnej, pożarach lasów czy innych zjawiskach, o których wiadomo, że wpływają na pogodę i klimat. Jeśli jutro dojdzie do erupcji wulkanicznej, chcielibyśmy wiedzieć, jak wpłynie ona na opady w tropikach za kilka miesięcy, mówi Francisco Doblas-Reyes z Barcelona Supercomputing Center. Tak precyzyjny model byłby w stanie pokazać np. jak subsydiowanie paliw roślinnych wpływa na wycinkę lasów Amazonii czy też, jak zmiany klimatu wpłyną na ruch migracyjne ludności w poszczególnych krajach. Działanie na tak precyzyjnym modelu będzie wymagało olbrzymich mocy obliczeniowych oraz kolosalnych możliwości analizy danych. O tym, jak poważne to zadanie, niech świadczy następujący przykład. W ubiegłym roku przeprowadzono testy modelu o rozdzielczości 1 kilometra. Wykorzystano w tym celu najpotężniejszy superkomputer na świecie, Summit. Symulowano 4 miesiące działania modelu. Testujący otrzymali tak olbrzymią ilość danych, że wyodrębnienie z nich użytecznych informacji dla kilku symulowanych dni zajęło im... pół roku. Obecnie w tym tkwi najpoważniejszy problem związany z modelami pogodowymi i klimatycznymi w wysokiej rozdzielczości. Analiza uzyskanych danych zajmuje bardzo dużo czasu. Dlatego też jednym z najważniejszych elementu projektu Destination Earth będzie stworzenie modelu analitycznego, który dostarczy użytecznych danych w czasie rzeczywistym. Destination Earth będzie prawdopodobnie pracował w kilku trybach. Na co dzień będzie się prawdopodobnie zajmował przewidywaniem wpływu ekstremalnych zjawisk atmosferycznych na najbliższe tygodnie i miesiące. Co jakiś czas, być może raz na pół roku, zajmie się długoterminowymi, obejmującymi dekady, prognozami zmian klimatycznych. Nie tylko Europa planuje tworzenie precyzyjnych modeli klimatycznych przy użyciu eksaskalowych superkomputerów. Też zmierzamy w tym kierunku, ale jeszcze nie zaangażowaliśmy się to tak mocno, przyznaje Ruby Leung z Pacific Northwest National Laboratory, który jest głównym naukowcem w prowadzonym przez amerykański Departament Energii projekcie modelowania systemu ziemskiego. « powrót do artykułu
  3. Tegoroczna International Conference for Hight Performance Computing (SC19) nie przyniosła żadnych sensacyjnych informacji na temat TOP500, listy najpotężniejszych komputerów na świecie. Znacznie bardziej interesujące było to, co mówiono o systemach eksaskalowych, których budowa ma rozpocząć się w 2021 roku. Wielkimi wygranymi są tutaj ADM, Cray i Intel. Już teraz wiadomo, że firmy te będą tworzyły trzy eksaskalowe maszyny, których powstanie sfinansuje Departament Energii. Cray, należący obecnie do HP Enterprise, będzie odpowiedzialny za połączenia we wszystkich wspomnianych superkomputerach. Maszyna eksaskalowa to superkomputery zdolny do wykonania 1 eksaflopsa czyli 1 tryliona (1018) operacji zmiennoprzecinkowych na sekundę. Budową superkomputera Frontier, który stanie w Oak Ridge National Laboratory, zajmą się AMD i Cray. AMD dostarczy CPU i GPU. Zintegrowanie całości będzie zadaniem Craya. Z kolei maszyna Aurora, przeznaczona dla Argonne National Laboratory, ma zostać zbudowana przez Intela (GPU i GPU) oraz Craya (integracja). Trzeci z planowanych w najbliższych latach amerykańskich systemów eksaskalowych – El Capitán – ma zostać zbudowany przez Craya. Obecnie nie wiadomo, kto dostarczy doń procesorów. Na pierwszy rzut oka widać, że brakuje w tym towarzystwie dwóch potentatów rynku HPC (High Performance Computing) – IBM-a i Nvidii. Jednak jeśli nawet żadna z tych firm nie będzie zaangażowana w budowę El Capitana, to z pewnością nie zabraknie dla nich pracy na rynku superkomputerów. Jeszcze przed SC19 odbyła się konferencja zorganizowana przez Intela, na której koncern mówił o kościach, które rozwija na potrzeby Aurory. Wiemy, że zostaną one wykonane w 7-nanometrowym procesie. Nazwa kodowa procesora Xeon dla Aurory to Sapphire Rapids. Jednak uczestników konferencji bardziej zainteresował przyszły intelowski GPU – Xe HPC o nazwie kodowej Ponte Vecchio. Ponte Vecchio będzie miał wersję specjalnie na rynek HPC. Głównym zadaniem układów GPU przeznaczonych do zastosowań HPC jest przetwarzanie liczb zmiennoprzecinkowych pojedynczej i podwójnej precyzji, jednak nowy GPU Intela ma również wspierać formaty popularne na polu sztucznej inteligencji, takie jak INT8, BFloat16 i FP16. Intel wykorzysta również technologię pakowania układów EMIB, która pozwala na podłączenie GPU do interfejsu HBM (High Bandwidth Memory). Ponadto w Ponte Vecchio znajdziemy technologię Foveros 3D pozwalającą składać procesor na podobieństwo klocków i interkonekt XE Memory Fabric (XEMF), przez co CPU i GPU mają mieć dostęp do superszybkiej pamięci zwanej Rambo cache'em. Dzięki dużej ilości cache'u ma poprawić się skalowalność tak ambitnych projektów jak superkompuery eksaskalowe. Na potrzeby tych rozwiązań intel tworzy też nowe oprogramowanie oparte na nowym języku programowania Data Parallel C++ (DPC++). Bazuje on na standardzie SYCL z dodanymi przez Intela specyficznymi rozszerzeniami. Pojedynczy węzeł Aurory będzie zawierał 2 układy Xeon Sapphire Rapids oraz 6 Ponte Vecchio HPC GPU. Trzeba zauważyć, że Intel wziął na siebie bardzo ambitne zadanie. W ciągu dwóch lat musi bowiem mieć gotowe i przetestowane nowe oprogramowanie, nowy GPU wykonany według nowego procesu produkcyjnego i nowej technologii pakowania. W lepszej sytuacji jest AMD. Maszyna Frontier będzie korzystała z EPYC CPU i Radeon Instinct GPU. Firma już produkuje te kości. Obecnie pracuje nad ROCM, czyli odpowiedzią na CUDA Nvidii. ROCM będzie wspierało Tensor Flow i PyTorch. Obecnie AMD bardzo mocno inwestuje w rozwój tej platformy, a podczas SC19 przedstawiciele firmy zapowiedzieli poszerzenie ofery procesorów EPYC. Co jeszcze wiemy o przyszłych amerykańskich eksaskalowych komputerach? Budowana przez Craya maszyna El Capitán będzie stała z Lawrence Livermore National Laboratory. Jej maksymalna wydajność ma przekraczać 1,5 eksaflopsa, a komputer – wyposażony w zaawansowane możliwości modelowania, symulacji i sztucznej inteligencji bazujące na architekturze Shasta – będzie wykorzystywany do zadań związanych z bezpieczeństwem nuklearnym. Na jego zbudowanie przeznaczono 600 milionów USD, a maszyna ma zostać dostarczona pod koniec 2022 roku. Tworzony przez AMD i Craya Frontier ma ruszyć już w 2021 roku, a jego wydajność ma być wyższa niż 1,5 eksafolopsa. Superkomputer będzie wykorzystywany do wielu zadań związanych m.in. z badaniami nad rozpadem atomowym, badaniami klimatu, zostanie zaprzęgnięty do pracy w dziedzinie biomedycyny i inżynierii materiałowej. Również i on ma kosztować około 600 milionów USD. Jeśli zaś chodzi o Aurorę, to będzie się on zajmował badaniami nad fuzją jądrową, poszukiwał leków na nowotwory, wykorzystany zostanie przez chemików do badania procesów katalitycznych, wspomoże też nauki z dziedziny neurobiologii czy astrofizyki. Również i na tę maszynę przeznaczono 600 milionów dolarów. Jej wydajność ma przekraczać 1 eksaflops, a komputer ma być gotowy w 2021 roku. « powrót do artykułu
  4. Do 2020 r. naukowcy z Akademii Górniczo-Hutniczej w Krakowie zbudują, razem z partnerami europejskimi, superkomputer. Będzie on 10 razy szybszy niż obecnie działający najszybszy komputer w Europie – poinformowało Ministerstwo Nauki i Szkolnictwa Wyższego. Ów superkomputer trafi do jednego z ośmiu ośrodków obliczeń superkomputerowych, których lokalizację ogłosiła w piątek Komisja Europejska. Europejskie superkomputery będą wspierać naukowców, przemysł i przedsiębiorstwa w opracowywaniu nowych zastosowań w wielu dziedzinach – od tworzenia leków i nowych materiałów, po walkę ze zmianą klimatu. Prace odbędą się w ramach Europejskiego Wspólnego Przedsięwzięcia w dziedzinie Obliczeń Wielkiej Skali (EuroHPC Joint Undertaking). Deklarację o przystąpieniu Polski do EuroHPC podpisał w 2018 wicepremier, minister nauki i szkolnictwa wyższego Jarosław Gowin. Jak podało Ministerstwo Nauki i Szkolnictwa Wyższego (MNiSW), Polska jest jednym z ośmiu krajów, które wchodzi w skład konsorcjum LUMI (Large Unified Modern Infrastructure). Razem z Finlandią, Belgią, Czechami, Danią, Norwegią, Szwecją i Szwajcarią weźmie udział w opracowaniu, instalacji i udostępnieniu naukowcom superkomputera przed-eksaskalowego. Instalacja planowana jest już w roku 2020 i odbędzie się w fińskim centrum danych w Kajaani. Polskę w konsorcjum LUMI reprezentuje Akademickie Centrum Komputerowe Cyfronet Akademii Górniczo-Hutniczej w Krakowie, operator najszybszego w Polsce superkomputera Prometheus. Planowana moc obliczeniowa superkomputera będzie ok. 10 razy większa od szwajcarskiego Piz Daint – najszybszego superkomputera działającego obecnie w Europie. Dzięki temu europejscy naukowcy i przedsiębiorcy zyskają narzędzie dostępne do tej pory jedynie światowym liderom w zakresie obliczeń wielkiej skali: USA, Japonii i Chin - poinformował resort nauki. Dostęp do superkomputera będzie realizowany tradycyjnie, jak również poprzez chmurę. Całkowity budżet systemu wynosi ponad 207 mln euro. Połowa tej kwoty pochodzi ze środków Komisji Europejskiej, a połowa od państw tworzących konsorcjum. Ministerstwo Nauki i Szkolnictwa Wyższego przekaże na ten cel 5 mln euro. To wsparcie zapewni polskim naukowcom - zarówno akademickim, jak i tym z przemysłu - bezpośredni dostęp do najszybszych europejskich zasobów obliczeniowych – podkreśla resort nauki. Jak przypomina, obecnie polscy naukowcy korzystają z istniejących superkomputerów m.in. do badania sztucznych liści grafenowych odtwarzających proces fotosyntezy; komputerowego projektowania leków, modelowania enzymów i wydajnych katalizatorów, symulacji cząstek elementarnych; analizy fal grawitacyjnych. Obliczenia wielkiej skali umożliwią przeprowadzanie wielokrotnie bardziej zaawansowanych badań niż obecnie. Nowe możliwości pozwolą na dokonywanie przełomów w nauce. Przekroczenie istniejących ograniczeń przyczyni się do nowych osiągnięć w zakresie chemii, inżynierii materiałowej, biotechnologii, fizyki czy medycyny - wskazuje resort nauki. Według MNiSW moc obliczeniowa superkomputera z centrum obliczeniowego z Kajaani pozwoli podjąć również takie problemy badawcze, jak prognozowanie zmian klimatycznych, rozwój sztucznej inteligencji, produkcję czystej energii; wspomoże też badania w zakresie medycyny spersonalizowanej. Superkomputer będzie składać się z trzech partycji: akceleracyjnej, opartej o procesory graficzne ogólnego przeznaczenia GPU, klasycznej, zbudowanej z tradycyjnych procesorów CPU, partycji do analizy danych. Planowana moc obliczeniowa superkomputera EuroHPC to ok. 200 PFlops, czyli 0,2 EFlops. Na potrzeby prowadzenia obliczeń superkomputer będzie wyposażony w zasoby pamięci masowych o pojemności ponad 60 PB, w tym szybkie pamięci typu flash o przepustowości ponad 1TB/s. « powrót do artykułu
  5. Intel zaprezentował 50-rdzeniowy układ Knights Corner o wydajności 1 teraflopsa. Przed 14 laty taką wydajność miał najpotężniejszy wówczas superkomputer świata, ASCI Red. Nowy procesor Intela ma więc taką moc obliczeniową jak 7264 ówczesne układy. Procesor Knights Corner wykorzystuje rozwiązania opracowane na potrzeby układu Larrabee. Będzie on produkowany w technologii 22 nanometrów i skorzysta z trójbramkowych tranzystorów. Intel ma zamiar użyć Knights Corner to zbudowania przed rokiem 2018 superkomputera, którego wydajność będzie liczone a eksaflopsach. Knights Corner trafi na rynek już w przyszłym roku, a w 2013 roku rozpocznie pracę w 10-petaflopsowym superkomputerze Stampede zamówionym przez University of Texas.
  6. Superkomputer Watson, który pokonał w teleturnieju Va Banque ludzkich arcymistrzów - Kena Jenningsa i Brada Ruttera - stanie do walki z... trolami patentowymi. IBM wyposażył komputer w oprogramowanie o nazwie Strategic IP Insight Platform (SIIP), dzięki któremu maszyna będzie mogła zapoznawać się z recenzowanymi pismami specjalistycznymi, bazami danych patentów, będzie katalogowała przedsiębiorstwa, analizowała ich własność intelektualną i produkty. IBM ma nadzieję, że dzięki temu będzie można łatwo wyłapać patenty, które nie powinny być przyznane, gdyż już wcześniej używano tego typu rozwiązań. Teoretycznie patenty powinny być przyznawane tylko na rozwiązania nowe i nieoczywiste. Jednak samo zdefiniowanie tego, co jest rozwiązaniem „oczywistym" jest bardzo trudne. Jeśli zaś weźmiemy też pod uwagę błędy popełniane przez urzędników, nawał pracy, zaniechania, niemożność dotarcia do wszelkich danych i inne czynniki, stanie się jasnym, jak łatwo można przyznać patent na rozwiązanie, które istniało już wcześniej. Tutaj ma właśnie wkroczyć Watson. O ile bowiem superkomputer nie rozstrzygnie sporów wokół tego, które rozwiązanie jest oczywiste, a które nie, to może pomóc w stwierdzeniu, czy jakiś wynalazek był już wcześniej używany. Podczas pokazu Watsona wyposażono w opis 4,7 miliona patentów oraz 11 milionów artykułów naukowych z lat 1976-2000. Watson na podstawie tekstu i grafik wyodrębniał nowe związki chemiczne, odnajdował słowa-klucze, nazwiska autorów i nazwy firm. Na podstawie takiej analizy Watson wyodrębnił 2,5 miliona związków chemicznych, które uznał za unikatowe. Dla każdego z nich zidentyfikował następnie najwcześniejszy patent. IBM udostępnił utworzoną przez Watsona bazę amerykańskiemu NIH (National Institutes of Health), zezwalając każdemu naukowcowi, niezależnie od miejsca zamieszkania, na bezpłatne korzystanie z bazy.
  7. Japoński superkomputer Tsubame 2.0 otrzymał prestiżową Nagrodę Gordona Bella. To najwyższe wyróżnienie na rynku superkomputerów. Przyznawane jest ono za niezwykłe osiągnięcia w dziedzinie przetwarzania równoległego. Tsubame 2.0 to rzeczywiście niezwykła maszyna. Wykorzystuje ona serwery HP ProLiant SL390 z sześciordzeniowymi procesorami Xeon 5650 oraz karty Nvidia Tesla GPU. Dzięki zastosowaniu procesorów graficznych do wykonywania obliczeń wektorowych udało się znacznie odciążyć CPU. Do osiągnięcia wydajności 2 petaflopsów Tsubame 2.0 potrzebuje zaledwie 1,2 megawata mocy. Superkomputer pracuje zatem 3,4 razy bardziej efektywnie niż jego odpowiednik, komputer Cielo, który wykorzystuje tylko procesory x86. Tsubame 2.0 zajmuje pierwsze miejsce na liście Green500, najbardziej efektywnych superkomputerów na świecie.
  8. Barcelońskie Centrum Superkomputerowe, w którym stoi Mare Nostrum, niegdyś najpotężniejszy komputer Europy, ogłosiło, że ma zamiar zbudować superkomputer wykorzystujący procesory ARM. Byłaby to pierwsza maszyna tego typu. Komputer będzie wykorzystywał układy Nvidii Tegra 3 (znane wcześniej jako Kal-El) oraz CUDA GPU. Procesory graficzne CUDA będę używane do przyspieszania obliczeń wykonywanych przez Tegra 3. Użycie układów ARM w miejsce najczęściej wykorzystywanych kości x86 ma na celu zmniejszenie poboru energii przez komputer. Obecnie używane superkomputery wymagają do pracy olbrzymich ilości energii. Japoński superkomputer K, pierwsza maszyna, której moc obliczeniowa przekroczyła 10 petaflopsów, potrzebuje niemal 13 megawatów. Wraz ze wzrostem mocy obliczeniowej rosną też rachunki za energię, a tymczasem trwa budowa kolejnych supermaszyn o mocy powyżej 10 PFlops.
  9. Fujitsu poinformowało o zbudowaniu superkomputera PRIMEHPC FX10, który można teoretycznie skalować do osiągnięcia wydajności 23,2 petaflopsa. Wszystkie elementy superkomputera są dziełem Fujitsu. W swojej maksymalnej konfiguracji maszyna może składać się z 98 304 węzłów i korzystać z 6 petabajtów pamięci. Komputer wykorzystuje procesory SPARC64 IXfx, które są znacznie bardziej wydajne od SPARC64 VIIIfx, na jakich bazuje superkomputer K. Każdy z nowych CPU wyposażono w 16 rdzeni obliczeniowych, a wydajność procesora sięga 236,5 gigaflopsa. Wydajność na wat to ponad 2 gigaflopsy. Fujitsu udoskonaliło wszystkie elementy superkomputera, od oprogramowania po urządzenia służące wymianie danych. Jednocześnie ogłoszono powstanie nowej technologii chłodzenia podzespołów superkomputera. Procesory chłodzone są wodą, a odpowiednio regulując jej przepływ można w ten sposób uzyskać wodę o temperaturze 40-55 stopni Celsjusza. Opracowane przez Fujitsu ciepłowody pracują najefektywniej przy tej właśnie temperaturze, co pozwala im na schłodzenie tejże wody do poziomu 15-18 stopni Celsjusza i wykorzystanie jej do chłodzenia serwerowni. Wcześniej nie istniała technologia, która pozwoliłaby na chłodzenie centrów bazodanowych wodą podgrzaną przez komputery pracujące w tym centrum. Fujitsu informuje, że takie rozwiązanie pozwala na zaoszczędzenie około 20% energii używanej przez system klimatyzacyjny centrum. Z kolei koszty klimatyzacji stanowią aż 40% kosztów energii przeciętnego centrum bazodanowego.
  10. Chiny poinformowały o zbudowaniu pierwszego superkomputera, który wykorzystuje tylko i wyłącznie rodzime procesory. Amerykańscy specjaliści przyznają, że są tym zaskoczeni. To niespodzianka - stwierdził Jack Dongarra, twórca TOP500 - listy najbardziej wydajnych suporkomputerów. Maszyna Sunway BlueLight MPP została uruchomiona w Narodowym Centrum Superkomputerowym w Jinan. Komputer wykorzystuje 8700 procesorów ShenWei SW1600, a jego maksymalna wydajność nieco przekracza 1 petaflops. Chiński superkomputer znajdzie się prawdopodobnie w drugiej dziesiątce najpotężniejszych maszyn świata. Jego wydajność sięga 74% wydajności najszybszej amerykańskiej maszyny - Jaguara. O chińskim superkomputerze niewiele wiadomo. Procesor ShenWei ma prawdopowodnie podobną architekturę do najbardziej zaawansowanych układów Intela. Amerykańscy eksperci nie są jednak zgodni co do tego, czy układ chłodzenia zastosowany w Sunway BlueLight pozwoli Chińczykom na zbudowanie w przyszłości maszyny o wydajności liczonej w eksaflopsach. Na fotografiach widać, że Sunway korzysta z zaawansowanego chłodzenia wodnego. Stworzenie dobrze działającego chłodzenia tego typu jest bardzo, bardzo trudne. To poważny projekt. Ta technologia chłodzenia może pozwolić na osiągnięcie eksaflopsa. Są na dobrej drodze by wygrać wyścig - mówi Steven Wallach, główny naukowiec firmy Convey Computer, producenta superkomputerów. Obecnie amerykański Departament Energii planuje stworzenie trzech komputerów, których wydajność sięgnie 10-20 petaflopsów. Niewykluczone, że przed końcem dekady USA zbudują eksaflopsowy komputer. Jednak czy tak się stanie, nie wiadomo. Większość specjalistów zwraca bowiem uwagę, że wciąż nie dysponujemy technologią, która umożliwiłaby stworzenie takiej maszyny.
  11. IBM zrezygnował z uczestnictwa w rozpoczętym w 2006 roku Blue Waters - projekcie, którego celem jest stworzenie superkomputera o wydajności liczonej w petaflopsach. O wycofaniu się Błękitnego Giganta, głównego uczestnika programu, poinformowały wspólnie IBM oraz National Centre of Supercomputing Applications (NCSA). Innowacyjna technologia, którą IBM opracował, była bardziej złożona i wymagała znacznie większych nakładów finansowych oraz technicznych ze strony IBM-a niż początkowo przewidywano. NCSA i IBM starały się wypracować nowe porozumienie dotyczące udziału IBM-a w projekcie, jednak nie udało się go osiągnąć - czytamy w oświadczeniu koncernu. Projekt Blue Waters rozpoczęto w roku 2006 dzięki grantowi w wysokości 208 milionów dolarów, który na ten cel przeznaczyła Narodowa Fundacja Nauki. Rok później wybrano IBM-a na głównego wykonawcę superkomputera. Miał on korzystać z procesorów Power 7. Dotychczas IBM otrzymał ze wspomnianego grantu 30 milionów dolarów. Firma zwróci te pieniądze. John Melchi, dyrektor ds. administracyjnych w NCSA powiedział, że koszty rozwoju nowych technologii opracowanych przez IBM-a okazały się tak wysokie, iż koncern zrezygnował z dalszej współpracy. Teraz NCSA rozgląda się za innym partnerem. Zastrzega przy tym, że kwota grantu pozostaje taka sama i nie będzie waloryzowana o wskaźnik inflacji. Celem projektu Blue Waters jest stworzenie superkomputera o wydajności około 10 petaflopsów, który będzie nadawał się do obliczeń ogólnego przeznaczenia, a który jednocześnie będzie dawał gwarancję, że uruchomiona na nim typowa aplikacja naukowa będzie mogła liczyć na wydajność nie mniejszą niż 1 petaflops. Meichi mówi, że nawet po wycofaniu się IBM-a jest szansa, że Blue Waters rozpocznie prace przed końcem 2012 roku. Obecnie najbardziej wydajnym superkomputerem na świecie jest japoński K, którego maksymalna wydajność wynosi 8,16 PFlops. Warto też przypomnieć, że niedawno Cray ogłosił powstanie architektury XK6, która ma umożliwić zbudowanie nawet 50-petaflopsowego superkomputera.
  12. NVIDIA informuje, że Moskiewski Uniwersytet Państwowy rozbuduje swój superkomputer Łomonosow o 1554 układy GPU Tesla X2070. Dzięki temu maksymalna wydajność Łomonosowa ma osiągnąć 1,3 petaflopsa. Tym samym rosyjski superkomputer mógłby trafić do pierwszej dziesiątki najpotężniejszych maszyn na świecie. „Rozbudowany system łączy w sobie 1554 układy NVIDIA Tesla X2070 z identyczną liczbą czterordzeniowych CPU, dzięki czemu jego maksymalna moc obliczeniowawyniesie 1,3 petaflopsa, co uczyni go numerem 1 w Rosji i jednym z najszybszych systemów na świecie. System używany jest do badań wymagających intensywnych obliczeń, takich jak zmiany klimatyczne, modelowanie oceanów, formowanie się galaktyk" - czytamy w oświadczeniu NVIDII.
  13. Amerykańscy eksperci, w tym Steven Koonin, podsekretarz odpowiedzialny za kwestie naukowe w Departamencie Energii (DoE) twierdzą, że w ciągu najbliższych kilkunastu miesięcy Chiny wybudują superkomputer opierając się wyłącznie na rodzimej technologii. Koonin stwierdził, że Państwo Środka pracuje nad maszyną o wydajności liczonej w petaflopsach wykorzystującą miejscowe komponenty, a jej powstania należy spodziewać się w ciągu najbliższych 12-18 miesięcy. Jasnym jest, że DoE nie będzie już jedyną organizacją, która przesuwa granice wydajności komputerów - dodał Koonin. Doradca Koonina powiedział, że termin 12-18 miesięcy oszacowano na podstawie doniesień z Chin, rozmów z chińskimi naukowcami oraz wizyt w Chinach. O podobnym horyzoncie czasowym mówi profesor Jack Dongarra z University of Tennessee, jeden z twórców listy Top500. Obecnie rynek superkomputerów jest zdominowany przez amerykańskie firmy. Niemal 80% wykorzystywanych procesorów to układy Intela, ponad 11% to kości produkcji AMD, a 8% to IBM-owskie procesory Power. Chiński superkomputer Tianhe-1A, który jest obecnie najpotężniejszą maszyną na świecie, korzysta z intelowskich Xenonów oraz procesorów graficznych Tesla produkowanych przez Nvidię. Jego twórcy zastosowali również rodzime, ośmiordzeniowe układy FeiTeng-1000 o architekturze SPARC. W Tianhe użyto też chińskiej technologii przesyłu danych, która jest bardziej wydajna od InfiniBand, wciąż jeszcze nie dorównuje zamkniętym standardom oferowanym przez amerykańskie firmy. Jednak dla analityka Steve'a Conwaya z IDC najbardziej imponującym osiągnięciem jest fakt, że sami stworzyli większość oprogramowania dla takich maszyn. Analityk dodaje, że Chiny mogą zbudować supermaszynę na własnych podzespołach, jednak będą to procesory stworzone z myślą o tym właśnie superkomputerze i nieprzeznaczone na rynek. Jego zdaniem pierwsze chińskie procesory zdolne do konkurowania na globalnym rynku pojawić się mogą za 5-10 lat. Stany Zjednoczone pozostają największym producentem superkomputerów i krajem, który w największym stopniu finansuje ich rozwój. Tylko w bieżącym roku USA wydadzą z budżetu 2 miliardy dolarów na systemy typu HPC (high-performance computing). To kwota, która została przeznaczona na nieutajnione systemy. Nie wiadomo, ile jakie sumy są przeznaczane na systemy tajne. Naukowcy obawiają się, że częściowe wybory do Kongresu, które będą miały miejsce w bieżącym roku, zmienią układ sił i pojawią się żądania obcięcia wydatków na tajne systemy. Z drugiej jednak strony chińskie postępy w dziedzinie superkomputerów mogą przekonać polityków o konieczności utrzymania lub zwiększenia budżetu na tego typu przedsięwzięcia. Przed kilkoma miesiącami Jeremy Smith, dyrektor Centrum Biofizyki Molekularnej w Oak Ridge National Laboratory mówił, że bardzo cieszy go konkurencja, gdyż zwiększające się zainteresowanie superkomputerami przyczynia się do ich rozwoju. W konkurencji z innymi krajami wszyscy wygrywają - dlatego bardzo mi się to podoba - stwierdził Smith. Jak wspomina, gdy w roku 2002 pojawił się japoński Earth Simulator zaszokował on środowisko, a National Research Council w swoim raporcie stwierdził, że był to dzwonek alarmowy, pokazujący, iż możemy nie tylko stracić przewagę nad konkurencją, ale również, co ważniejsze, zdolność do osiągnięcia własnych celów.
  14. Pojawienie się chińskiego superkomputera na pierwszym miejscu listy TOP500 nie uszło uwagi samego prezydenta Obamy. W ciągu ostatnich kilku tygodni polityk dwukrotnie o tym wspominał, mówiąc o konieczności utrzymania przez USA technologicznej przewagi nad innymi krajami. Jednak zarówno z wypowiedzi samego prezydenta jak i z dokumentów wydanych przez jego Radę ds. Nauki i Technologii można wywnioskować, że będziemy świadkami zmian w metodologii pomiarów wydajności superkomputerów. Specjaliści uważają bowiem, że projektowanie maszyn tak, by wypadały dobrze w teście Linpack jest marnowaniem pieniędzy i może skutkować przegapieniem możliwości poczynienia znacznych postępów w technologii superkomputerów. Celem naszych inwestycji w HPC (high-performance computing) powinno być rozwiązywanie tych problemów obliczeniowych, które są zgodne z narodowymi priorytetami, tymczasem ten jednowymiarowy test mierzy tylko jeden z czynników potrzebnych do osiągnięcia celu - czytamy w dokumencie Rady. Oczywiście, nie znaczy to, że USA chcą się wycofać z wyścigu superkomputerów. Wręcz przeciwnie. Jakkolwiek byłoby niemądre pozwolić sobie na zajmowanie znacząco gorszej pozycji w naukowych benchmarkach, które dowiodły swojej praktycznej przydatności, bo jednak skupienie się tylko i wyłącznie na utrzymaniu przewagi w liczbie wykonywanych operacji na sekundę nie leży w naszym interesie - stwierdzili eksperci. Angażowanie się w taki 'wyścig zbrojeń' może być bardzo kosztowane i może odciągnąć zasoby od badań podstawowych, skupiających się na opracowaniu nowego podejścia do HPC, które umożliwiłoby odskoczenie innym państwom i utrzymanie pozycji niezagrożonego lidera, którą Ameryka cieszyła się w przeszłości - czytamy w dokumencie. Obecnie pozycja USA nie jest zagrożona. Na 500 najpotężniejszych superkomputerów świata aż 280 znajduje się w Stanach Zjednoczonych, USA zajmują 5 z 10 czołowych pozycji, a największymi producentami superkomputerów są amerykańskie firmy. Od lat jednak względna pozycja Stanów Zjednoczonych słabnie, a przewaga nad innymi krajami topnieje. Eksperci już od dłuższego czasu zwracają uwagę, że Linpack powinien zostać uzupełniony o inne testy, gdyż sam mierzy tylko i wyłącznie "surową" zdolność obliczeniową komputerów i coraz mniej odpowiada wyzwaniom nowoczesnej nauki. Jednym z takich proponowanych testów jest Graph500, który mierzy nie tylko moc obliczeniową, ale również bierze pod uwagę wielkość maszyny. Oznacza to, że test ten może wykazać, iż mniejszy superkomputer jest w pewnych zastosowaniach bardziej wydajny od większego. Z opinią doradców prezydenta Obamy zgadza się Jack Dongarra, profesor informatyki z University of Tennessee i jeden z twórców listy TOP500. On sam jest jednym z autorów powstałego na zlecenia DARPA testu HPCC (High Performance Computing Challenge), który mierzy 7 różnych aspektów systemu superkomputerowego. Benchmark, którego używamy w TOP500 mierzy tylko jeden wskaźnik systemu. Z Graph500 będzie ten sam problem. HPCC pozwala na zmierzenie różnych aspektów - mówi.
  15. Podczas konferencji Supercomputing 2010 główny inżynier Nvidii, Bill Dally, zaprezentował projekt układu graficznego, który będzie napędzał eksaflopsowe komputery. System Echelon, który na razie istnieje tylko na papierze, będzie charakteryzował się wydajnością rzędu 10 teraflopsów. Wykona on pojedynczą operację zmiennoprzecinkową zużywając do tego celu zaledwie 10 pikodżuli, czyli 20-krotnie mniej niż obecne układy Fermi. Echelon składa się ze 128 procesorów strumieniowych, z których każdy zbudowany jest z 8 rdzeni. W efekcie otrzymamy 1024-rdzeniowy procesor, którego każdy rdzeń jest w stanie wykonać w jednym takcie zegara cztery operacje zmiennoprzecinkowe o podwójnej precyzji. Odpowiada to wydajności 10 teraflopsów. Echelon będzie zatem korzystał z dwukrotnie większej liczby rdzeni niż obecne najbardziej wydajne GPU Nvidii, z których każdy wykona czterokrotnie więcej operacji w takcie zegara. Poważne zmiany zajdą też w podsystemie pamięci. Echelon będzie miał do dyspozycji 256 megabajtów dynamicznie konfigurowalnej SRAM. Pamięć będzie można podzielić aż na sześć różnych poziomów, przydzielając każdemu z rdzeni własną przestrzeń. Dzięki takiej konfiguracji dane będą znajdowały się możliwe blisko miejsca przetwarzania, co pozwoli zaoszczędzić olbrzymią ilość energii zużywanej obecnie na ich przesyłanie. Ponadto chip zostanie wyposażony w mechanizm rozgłaszania, dzięki któremu wyniki poszczególnych działań będą mogły zostać udostępnione dowolnemu węzłowi, który będzie ich potrzebował. Struktura pamięci podręcznej układu będzie spójna pod względem logicznym ze strukturą CPU, co ułatwi tworzenie oprogramowania dla Echelona. Nvidia pracuje nad Echelonem w ramach finansowanego przez DARPA projektu Ubiquitous High Performance Computing. Firma rywalizuje tutaj z Intelem, MIT-em i Sandia National Laboratory. DARPA postawiła przed uczestnikami programu zadanie zbudowania do 2014 roku prototypowego petaflopsowego systemu, który ma zużywać nie więcej niż 57 kilowatów mocy. Taki system ma stać się podstawą do zbudowania do 2018 roku eksaflopsowego superkomputera.
  16. W Stanach Zjednoczonych powstają dwa niezwykle wydajne superkomputery. Obie maszyny mają osiągnąć wydajność 20 petaflopsów i mogą trafić na listę TOP500 w czerwcu 2012 roku. Obecnie najbardziej wydajny superkomputer to chiński Tianhe-1A, który jest w stanie wykonać 2,566 petaflopa w ciągu sekundy. Pierwszy z superkomputerów powstaje w Oak Ridge National Laboratory (ORNL), które obecnie jest w posiadaniu m.in. maszyny Jaguar, drugiego pod względem wydajności superkomputera. Komputer o podobnej mocy buduje też IBM na zlecenie Lawrence Livermore National Laboratory. Ma on zostać dostarczony zamawiającemu już w przyszłym roku, a pełną moc osiągnie w roku 2012. Obecnie jest zbyt wcześnie, by wyrokować, czy powstające amerykańskie maszyny obejmą prowadzenie na liście TOP500. Superkomputery to niezwykle przydatne narzędzia badawcze i bardzo interesują się nimi Chiny. Amerykańscy eksperci twierdzą, że Państwo Środka ma ambicję budowy superkomputera opartego wyłącznie na rodzimej technologii i może zrealizować ten cel w ciągu 12-18 miesięcy. Specjaliści przypuszczają, że projektowana maszyna ma charakteryzować się mocą ponad 1 PFlops. Wiadomo, że Chińczycy już używają własnej technologii. Najpotężniejszy superkomputer świata Tianhe-1A korzysta przede wszystkim z układów Intela oraz Nvidii, ale zastosowano w nim również procesory FeiTeng-1000. To 8-rdzeniowe układy korzystające z architektury Sparc. Są one wykorzystywane do zarządzania węzłami superkomputera. Wiadomo też, że Chiny dysponują własnymi technologiami przesyłu danych szybszymi od otwartego InfiniBand. Wciąż jednak nie dorównują one wydajnością zamkniętym standardom oferowanym przez amerykańskie firmy. Jeremy Smith, dyrektor Centrum Biofizyki Molekularnej w ORNL mówi, że bardzo cieszy go konkurencja, gdyż zwiększające się zainteresowanie superkomputerami przyczynia się do ich rozwoju. W konkurencji z innymi krajami wszyscy wygrywają - dlatego bardzo mi się to podoba - mówi Smith. Jak wspomina, gdy w roku 2002 pojawił się japoński Earth Simulator zaszokował on środowisko, a National Research Council w swoim raporcie stwierdził, że był to dzwonek alarmowy, pokazujący, iż możemy nie tylko stracić przewagę nad konkurencją, ale również, co ważniejsze, zdolność do osiągnięcia własnych celów. Naukowcy z niecierpliwością czekają na pojawienie się komputerów pracujących w eksaskali. Maszyna o wydajności 1 eksaflopsa będzie wykonywała w ciągu sekundy trylion (1018) operacji zmiennoprzecinkowych. To dla nauki oznacza skok jakościowy. System eksaskalowy pozwoli bowiem na dokładne symulowanie pojedynczej komórki. Każdy atom będzie tam reprezentowany - mówi Smith. To z kolei będzie miało kolosalne znaczenie dla rozwoju medycyny, biologii i nauk pokrewnych. Pierwsze systemy eksaskalowe mogą pojawić się jeszcze przed rokiem 2020.
  17. Doktor Bruno Michel z IBM Zurich twierdzi, że w ciągu kilkunastu lat mogą powstać superkomputery wielkości... kostki cukru. Będzie to możliwe dzięki nowemu podejściu do projektowania komputerów, które umożliwi układanie procesorów jeden na drugim. Układy będą chłodzone wodą przepływającą pomiędzy nimi. Architektura, nad którą pracuje IBM, nie ma jednak na celu zmniejszanie wielkości superkomputerów, a zbudowanie energooszczędnych maszyn. Obecnie około 2% światowego zużycia energii przypada na sprzęt komputerowy. Zdaniem Michela, w przyszłości musimy skupić się nie na zwiększaniu mocy komputerów a na zmniejszaniu przez nie zużycia energii. Michel wraz z zespołem zaprezentowali prototypowy system Aquasar. Rozmiarami przekracza on znacznie kostkę cukru, gdyż jest większy od lodówki. Jednak Aquasar zużywa o niemal 50% mniej energii niż najbardziej wydajne superkomputery. Jak zauważył Michel, w przeszłości podstawowym problemem były ceny sprzętu. Przed 50 lat pojedynczy tranzystor kosztował dolara. Obecnie koszty produkcji pojedynczego tranzystora są stukrotnie mniejsze od kosztów wydrukowania pojedynczego znaku na papierze. Tak znaczący spadek cen spowodował, że koszty nie są już przeszkodą na drodze do powstania superkomputerów przyszłości. Tym, co martwi specjalistów, są koszty energii potrzebnej mu do pracy. Michel przewiduje, że w przyszłości koszty operacyjne centrum bazodanowego będą wyższe niż koszty jego budowy. A do gwałtownego wzrostu zapotrzebowania na energię przyczynia się konieczność chłodzenia systemów komputerowych. Dlatego też coraz większą wagę przywiązuje się do zużycia energii. Obecnie najbardziej wydajne superkomputery są w stanie wykonać około 770 milionów operacji na sekundę zużywając przy tym 1 wat mocy. Aquasar zużywa 1 wat wykonując 1,1 miliarda operacji na sekundę. System jest jednak dość duży, dlatego też Michel i jego zespół pracują nad jego zmniejszeniem. "Obecnie zbudowaliśmy system Aquaser, który składa się z szafy pełnej procesorów. Planujemy, że za 10-15 lat zmniejszymy go do rozmiarów kostki cukru" - mówi Michel. Przed naukowcami piętrzą się jednak poważne problemy. Samo dostarczenie danych do miejsca, gdzie są one używane do przeprowadzenia obliczeń wymaga 1000-krotnie więcej energii niż jest zużywane podczas liczenia. Ponadto samo przesyłanie danych jest głównym czynnikiem opóźniającym wszelkie operacje logiczne. Systemy muszą być zatem chłodzone nie tylko tam, gdzie odbywają się obliczenia, ale również i tam, gdzie przesyłane są dane. Zapewnianie odbioru ciepła jest niezwykle skomplikowaną operacją. Jak mówi Michel, układ składający się z 1 miligrama tranzystorów wymaga obecnie urządzeń chłodzących o wadze 1 kilograma. Potrzebne jest zatem nowe podejście do kwestii przesyłania danych, obliczeń i chłodzenia. Im większy dystans dzieli układy, tym więcej energii jest zużywane i tym więcej ciepła wydzielane. Rozwiązaniem problemu byłoby układanie procesorów na sobie. Taka architektura wymaga jednak opracowania nowych systemów chłodzących.
  18. Udostępniono najnowszą listę TOP500 - zestawienie 500 najpotężniejszych superkomputerów na świecie. Jak już wcześniej pisaliśmy, na czele listy po raz pierwszy od lat znalazł się superkomputer spoza Stanów Zjednoczonych. Chińska maszyna Tianhe-1A charakteryzuje się wydajnością 2,566 PFlops. Wykorzystuje ona procesory Intel Xeon X5670 oraz GPU Nvidii. Na drugim miejscu znalazł się amerykański Jaguar o wydajności niemal 1,8 petaflopsa. Trzecie miejsce przypadło chińskiemu superkomputerowi Nebulae (1,247 PFlops), czwarte japońskiemu Tsubame (1,192 PFlops), a piąte amerykańskiemu Hooperowi (1,054 PFlops). Wśród komputerów, które przekroczyły petaflops znalazły się też francuski Tera-100 (1,050 PFlops) oraz amerykański Roadrunner (1,042 PFlops). Wśród 10 najpotężniejszych supermaszyn pięć znajduje się w USA, dwa pochodzą z Chin, a po jednym z Japonii, Francji i Niemiec. Najwięcej komputerów na TOP500 umieściły, jak zwykle, USA. Z kraju tego pochodzą aż 274 maszyny. Na drugim miejscu, z 41 superkomputerami, uplasowały się Chiny. Jeszcze przed rokiem Państwo Środka miało na liście 21 maszyn, co dawało mu dopiero 5. pozycję. Po 26 superkomputerów pochodzi z Francji, Niemiec i Japonii, a Wielka Brytania, która przed rokiem zajmowała 2. miejsce, obecnie spadła na 4. pozycję z 25 maszynami. Najwięcej superkomputerów - 398 - korzysta z układów Intela. W tym 392 używa architektury EM64T, 5 maszyn korzysta z IA-64 a jedna z architektury Core. Procesorów AMD używa 57 superkomputerów. Wszystkie korzystają z architektury x86_64. Kolejne 40 maszyn wykorzystuje architekturę Power. Najpopularniejszą rodziną systemów operacyjnych instalowanych na superkomputerach pozostaje Linux. Używany jest na 459 maszynach. System spod znaku pingwina zwiększa swoją popularność kosztem Uniksa. Ten z kolei jest wykorzystywany na 19 superkomputerach. Pięć maszyn używa systemu Windows, a 16 maszyn korzysta z systemów mieszanych.
  19. Europa doczekała się pierwszego petaflopsowego superkomputera na swoim terytorium. Maszyna Tera 100 to wspólny projekt firmy Bull oraz francuskiej Komisji Energii Alternatywnych i Energii Atomowej. W teście Linpack komputer osiągnął wydajność 1,05 petaflopsa. Jej teoretyczna wydajność to 1,25 PFlops, jednak nie została ona uzyskana w teście. Tymczasem lista TOP500, na którą trafia 500 najbardziej wydajnych superkomputerów świata, bierze pod uwagę maksymalną osiągniętą wydajność, a nie teoretyczną. Tera 100 korzysta z 17 480 procesorów z rodziny Intel Xeon 7500 oraz 300 terabajtów pamięci operacyjnej. Pamięć masowa ma łączną pojemność 20 petabajtów.
  20. Uczeni z Uniwerstytetu Johnsa Hopkinsa konfigurują swój nowy superkomputer w sposób, który może zmienić zasady pomiaru wydajności takich maszyn. Argumentują przy tym, że nowa konfiguracja jest lepiej dostosowana do obliczeń naukowych, podczas których superkomputery wykorzystują gigantyczne ilości danych. Obecnie wydajność superkomputerów mierzy się we flopsach czyli w operacjach zmiennoprzecinkowych na sekundę. Uczeni z Johna Hopkinsa konfigurują swoją maszynę pod kątem osiągnięcia najlepszej wydajności mierzonej w IOPS-ach, a zatem w liczbie operacji wejścia/wyjścia na sekundę. Innymi słowy, flopsy informują nas o zdolnościach obliczeniowych komputera, a IOPS-y o tym, jakie ilości danych mogą maszynę opuszczać i być do niej przesyłane. Alexander Szalay, informatyk i astrofizyk z Institute for Data Intensive Engineering and Science wyjaśnia, że dla naukowców liczba operacji wejścia/wyjścia stała się wąskim gardłem. Ludzie uruchamiają na superkomputerach coraz większe symulacje, które zajmują olbrzymie ilości miejsca w pamięci operacyjnej, i bardzo trudno jest zapisywać dane wyjściowe na dysk. Na nowy system, nazwany Data-Scope, przeznaczono 3,1 miliona dolarów, z czego 2,1 miliona to grant z Narodowej Fundacji Nauki. Superkomputer ma rozpocząć prace w maju przyszłego roku. Już w tej chwili 20 grup naukowych z Johnsa Hopkinsa wyraziło zainteresowanie jego użyciem. Chcą go wykorzystać do obliczeń związanych z genetyką, obiegiem wody w oceanach, turbulencjami, astrofizyką itp. Uniwersytet będzie udostępniał Data-Scope także obcym uczonym. Proponowana przez uczonych z Johnsa Hopkinsa zmiana podejścia może być bardzo interesująca, gdyż powinna pozwolić na zmniejszenie kosztów użytkowania superkomputerów. Obecnie większość uczonych może na pojedynczej maszynie analizować dane o objętości nie większej niż 10 terabajtów. Do obrabiania większej ilości danych zaprzęga się kilka superkomputerów. Jak twierdzi Szalay, dzięki zmianie konfiguracji i skupieniu się na wskaźniku IOPS, możliwe będzie obniżenie kosztów analizy danych. Twórcy Data-Scope zapewniają, że wydajność wydajność IOPS superkomputera wyniesie od 400 do 500 gigabitów na sekundę. To ponaddwukrotnie więcej niż wydajność IOPS obecnego lidera listy TOP500 - superkomputera Jaguar. Jednocześnie wydajność Data-Scope'a we FLOPS-ach to zaledwie 600 TFlops, czyli trzykrotnie mniej niż Jaguara. Projektowany superkomputer składa się z około 100 serwerów, z których każdy ma do dyspozycji 24 dedykowane HDD i 4 SDD. Zapewnią one przepustowość danych rzędu 4,4 gigabity na sekundę. Za zdecydowaną większość obliczeń będą odpowiadały po dwa procesory graficzne (GPU) umieszczone w każdym z serwerów. Konstruktorzy nowego superkomputera kierują się wytycznymi Gene'a Amdahla, który stwierdził, że idealna maszyna powinna dysponować 1 bitem I/O na każdą instrukcję, którą wykonuje. Obecnie reguła ta jest ignorowana i tzw. liczba Amdahla dla typowego superkomputera wynosi .001. W przypadku Data-Scope'a będzie to .6 lub .7.
  21. Chiny informują o zbudowaniu najpotężniejszego superkomputera na świecie. Wydajność maszyny Tianhe-1A wynosi ponad 2,5 petaflopsa. PFlops to biliard (1015) operacji zmiennoprzecinkowych na sekundę. Wiadomo, że superkomputer wykorzystuje 7000 procesorów graficznych oraz 14 000 CPU Intela. Twierdzenia o wydajności maszyny zostały zweryfikowane przez organizację TOP500, która co pół roku publikuje listę najbardziej wydajnych komputerów na świecie. Najbliższe wydanie listy ukaże się już w przyszłym miesiącu i wszystko wskazuje na to, że USA po raz pierwszy od lat stracą pozycję lidera listy TOP500. Najbliższym konkurentem Tianhe-1A (Droga Mleczna) będzie prawdopodobnie XT5 Jaguar z Oak Ridge National Laboratory, którego wydajność wynosi "zaledwie" 1,75 PFlops. Profesor Jack Dongarra z University of Tennessee, jeden z naukowców, którzy pracują nad listą TOP500 potwierdza powyższe doniesienia. "To wszystko prawda. W ubiegłym tygodniu byłem w Chinach, rozmawiałem z jego twórcami, widziałem system i potwierdziłem uzyskane wyniki. Jest o o 47% szybszy od maszyny z ORNL" - stwierdzil Dongarra. Chiński superkomputer waży ponad 155 ton.
  22. Superkomputer Anton został specjalnie zaprojektowany do pracy nad symulacją zaginania protein. Testy wykazały, że wykonuje on tego typu zadania stukrotnie szybciej niż dotychczas używane maszyny. Proteiny przyjmują najróżniejsze kształty, od których zależą ich właściwości. Przewidzenie w jaki sposób zagnie się białko pozwala na określenie funkcji, jaką może spełniać. Jest zatem niezwykle istotne np. podczas produkcji leków. Jednak białka są niezwykle skomplikowanymi strukturami, więc obliczenia konieczne do przewidzenia ich ostatecznego kształtu są bardzo czasochłonne. Tutaj z pomocą przychodzi Anton, który nie tylko potrafi je zagiąć, ale i obserwować jego dynamikę. Byliśmy przeświadczeni, że raz zagięta proteina jest statyczna jak skała, ale to nieprawda. Jest bardzo mobilna. Zmienia się pomiędzy poszczególnymi konformacjami - mówi David Eliezer z Weill Cornell Medical College. Anton to dzieło niezależnego instytutu badawczego D.E. Shaw Research. Jego założycielem jest były profesor Columbia University David Shaw. W 1986 roku porzucił on karierę naukową i zajął się finansami. Z czasem założył własny fundusz hedgingowy. Uczony odniósł sukces. W 2009 roku znalazł się na 123. miejscu listy 400 najbogatszych Amerykanów. Forbes oszacował jego majątek na 2,5 miliarda dolarów. Jednak wcześniej, bo w 2001 roku, profesor powrócił do nauki. Założył własny instytut badawczy i wykorzystał swój majątek by pracować nad tym, co go interesuje, i nie musieć oglądać się na dofinansowanie z budżetu federalnego. Zajął się dynamiką białek. Badania nad nią ma umożliwić Anton, superkomputer nazwany tak na cześć Antoine van Leeuwenhoeka. Maszyna jest od początku do końca dziełem pracowników D.E. Shaw Research. Sam założyciel instytutu był doradcą naukowym prezydenta Clintona, doradza też Obamie. Antona przetestowano za pomocą dwóch dobrze poznanych protein - domeny białka WW oraz inhibitora trypsyny. Superkomputer symulował, co dzieje się z białkiem podczas zginania, odginania i ponownego zginania. Uzyskano niezwykłą zgodność ze znanymi danymi eksperymentalnymi, co świadczy o przydatności Antona. Obliczenia, konieczne do pokazania tego, co dzieje się z inhibitorem trypsyny w ciągu 1 milisekundy zajęły Antonowi 100 dni. Dotychczas w tym samym czasie udawało się symulować procesy zachodzące w czasie 10 mikrosekund. Anton jest zatem 100-krotnie szybszy od poprzedników. Pomimo tak znacznego sukcesu Anton nie będzie nadawał się do każdego rodzaju symulacji. Przede wszystkim sam Shaw mówi, że konieczne jest przetestowanie go z innymi proteinami. Ponadto istnieją też białka, których proces zaginania jest liczony w sekundach. Jego symulowanie jest zatem poza zasięgiem nie tylko innych superkomputerów, ale także i Antona. Niewątpliwie jednak nowa maszyna przyczyni się do znacznego skrócenia czasu wielu badań i posłuży do stworzenia w przyszłości jeszcze szybszych superkomputerów specjalizujących się w zaginaniu białek.
  23. Zdaniem profesora Thomasa Lipperta, dyrektora Centrum Superkomputerowego Juelich w Niemchczech, systemy eksaskalowe pojawią się przed końcem przyszłej dekady. Obecnie na liście TOP 500 wymieniono trzy maszyny pracujące w petaskali, czyli ich wydajność wynosi co najmniej petaflops Skala eksa- zaczyna się od tysiąca petaflopsów. Innymi słowy superkomputery, których wydajność będzie liczona w eksaflopsach będą wykonywały trylion (1018) operacji zmiennoprzecinkowych na sekundę. Jedną z firm, dokonują dużych inwestycji na polu przetwarzania w eksaskali jest Intel. Koncern podpisał umowy z instytucjami specjalizującymi się w problematyce eksaskali. W ich ramach trzy laboratoria wchodzące w skład Intel Labs Europe skupiają się tylko i wyłącznie na pracach nad eksaskalowym przetwarzaniem. Steve Pawlowski, szef intelowskiego wydziału Central Architecture and Planning, mówi, że współczesna technologia nie pozwala na tworzenie komputerów o wydajności eksaflopsów, dlatego też konieczne jest opracowanie nowych rozwiązań. Jednak nie będzie to łatwe. Głównymi zadaniami, które trzeba rozwiązać są energooszczędność, problemy z przetwarzaniem równoległym, niezawodność działania, współpraca z układami pamięci, dostępność przestrzeni do przechowywania danych oraz przesył informacji. Konieczne też będzie opracowanie nowego oprogramowania. Profesor Lipperta uważa, że eksaflopsowe komputery mogą wykorzystywać nawet 10 milionów rdzeni. Obecnie żaden z superkomputerów nie wykorzystuje więcej niż 300 000 rdzeni, co uświadamia, jak trudnym zadaniem będzie stworzenie maszyny eksaflopsowej.
  24. Na Yale University powstał superkomputer, który potrafi przetwarzać informacje wizualne znacznie szybciej, niż dotychczas stosowane maszyny. Jego twórca, Eugenio Culurciello uważa, że NeuFlow będzie pewnego dnia w stanie kierować samochodem, gdyż sprawnie rozpozna na drodze ludzi, zwierzęta, pojazdy, drzewa i inne przeszkody. NeuFlow został zainspirowany sposobem działania wzroku ssaków i naśladuje naturalną sieć nauronową, dzięki czemu szybko interpretuje otaczający go świat. System korzysta ze specjalnego algorytmu dla rozległych sieci neuronowych używających sztucznych urządzeń wizyjnych. Autorem algorytmu jest Yann LeCun z New York University. LeCun i Culurciello mieli ten sam cel - opracowanie komputera zdolnego do prowadzenia samochodu. Dzięki ich wysiłkom NeuFlow jest w stanie w czasie rzeczywistym przetwarzać obrazy o rozdzielczości dziesiątków megapikseli i rozpoznawać znajdując się na nich obiekty. System jest też wyjątkowo wydajny. Wykonuje ponad 100 miliardów operacji na sekundę, korzystając przy tym z zaledwie kilku watów mocy. Standardowa karta graficzna dla peceta do przeprowadzenia podobnych operacji potrzebuje ponad 300 watów. Jeden z naszych prototypów przewyższa procesory graficzne pod względem wizyjnego rozpoznawania przedmiotów - mówi Culurciello. W zamierzeniach jego twórców cały superkomputer wizyjny ma być nie większy od portfela, a zatem bez problemów uda się go zmieścić w samochodzie. NeuFlow posłuży nie tylko do sterowania samochodami. Będzie można wbudować go w autonomiczne roboty czy w hełmy żołnierzy, zapewniając im 360-stopniowy kąt widzenia. http://www.youtube.com/watch?v=t4KR8laigzk
  25. Podczas konferencji Hot Chips przedstawiciele IBM-a poinformowali, że ich firma, za pieniądze rządowe, buduje superkomputer, który ma zapoczątkować nową generację tego typu maszyn. Przyszłe superkomputery mają być tańsze, zużywać mniej energii i być łatwiejsze w programowaniu niż obecnie wykorzystywane maszyny. Projekt budowy nowego superkomputera nazwano PERCS (Productive, Easy-to-use, Reliable Computing System). Ma on osiągać wydajność przekraczającą petaflops, a szczegóły na temat jego mocy i ceny IBM ma zdradzić podczas konferencji Supercomputing 2010, która odbędzie się w listopadzie. Projekt ten to niezwykły postęp w użyciu optyki w systemach komputerowych oraz zdecydowane przejście z wykorzystania łączy optycznych wyłącznie do przesyłania danych w kierunku użycia ich w obliczeniach - stwierdził Baba Arimilli, główny inżynier odpowiedzialny za projekty układów dla PERCS. Podczas Hot Chips opisano interesujący moduł, zawierający układ scalony działający jako hub wraz z optycznymi łączami. Hub został wykonany w technologii 45 nanometrów, ma 582 milimetry kwadratowe powierzchni i składa się nań 3-gigahercowy przełącznik ze zintegrowanym modułem routingu. Kość zawiera też 48 łączy optycznych o przepustowości 10 Gb/s każde. Moduł taki jest częścią większej płyty, na którą składają się cztery procesory Power7. Cały superkomputer będzie korzystał z 67 000 układów Power7.
×
×
  • Create New...