Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'Oak Ridge National Laboratory'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. W roku 2002 Paul Koehler wraz z kolegami z Oak Ridge Electron Linear Accelerator (ORELA) mierzyli rezonans neutronów w czterech różnych izotopach platyny. Uzyskane wyniki były inne od oczekiwanych. Dodatkowe, niedawno przeprowadzone badania sugerują, że obowiązujące obecnie teorie dotyczące struktury jądra atomowego mogą być błędne. Teorie te mówią bowiem, że nukleony powinny poruszać się chaotycznie. Tymczasem badacze z Oak Ridge National Laboratory odkryli, że ich ruch jest regularny. Nowe badania sugerują, że 200 nukleonów w jądrze platyny działa zgodnie a nie chaotycznie. Biorąc pod uwagę dość duże energie i wielką liczbę nukleonów, takie kolektywne działanie jest niespodziewane i nie potrafimy go wyjaśnić - napisali badacze. Ich zdaniem, eksperymenty pozwalają stwierdzić z 99,997% prawdopodobieństwem, że współczesna teoria o macierzach przypadkowych jest nieprawdziwa w odniesieniu do badanych jąder. Jednak by potwierdzić te odkrycia należy przeprowadzić eksperymenty na innych jądrach niż jądra platyny. Może bowiem okazać się, że tylko platyna wykazuje niespotykane właściwości niepasujące do teorii. Problem jednak w tym, że ze względu na oszczędności budżetowe ORELA został zamknięty i nie wiadomo, czy projekt kiedykolwiek ponownie ruszy. Jak informuje Koehler, obecnie jedynym miejscem na świecie, gdzie można przeprowadzić takie eksperymenty, jakie prowadził jego zespół, jest belgijski Geel Electron Linear Accelerator (GELINA). Badania Koehlera mogą mieć praktyczne zastosowanie w energetyce jądrowej. Zajmujący się nią specjaliści polegają bowiem na teorii o macierzach przypadkowych do oceny prawdopodobieństwa ucieczki neutronów, a zatem do wyliczenia właściwości osłon dla reaktorów i składowisk paliwa.
  2. Dwutlenek tytanu to jeden z „cudownych" materiałów współczesnej technologii. Przydaje się w roli katalizatora w wielu procesach chemicznych, stosowany jest także jako środek antybakteryjny i domieszkowany do farb, czy nawet w „cudownych" szczoteczkach do zębów, nie wymagających pasty. Jednym z ciekawszych zastosowań jest jego zdolność do neutralizowania szkodliwych tlenków azotu, na przykład emitowanych przez samochody. Naukowcy z Uniwersytetu w Eindhoven odkryli, jak domieszkować dwutlenek tytanu (TiO2) do betonu, uzyskując drogi które same neutralizują niemal połowę spalin samochodowych. Beton nasz powszedni Te same wątpliwości dotyczą innych nanocząstek, jakie bada doktor Anil Kumar Suresh wraz ze współpracownikami z Biological and Nanoscale Systems Group w amerykańskim Oak Ridge National Laboratory. Na podobnych zasadach stosuje się bowiem nanocząstki złota (Ag), tlenku cynku (ZnO) i dwutlenku ceru (CeO2). Dr Suresh tłumaczy, że szkodliwość nanocząstek jest trudna do określenia, zależy bowiem od bardzo wielu czynników: rozmiaru, kształtu, technologii produkcji i zastosowanych chemikaliów, związków chemicznych, które mogą pozostawać na ich powierzchni. Oszacowanie szkodliwości materiału pochodzącego od jednego producenta nic nam nie mówi o właściwościach formalnie takiego samego materiału, ale pochodzącego z innej firmy. Producenci tymczasem nie udzielają informacji o przeznaczeniu produktów, sposobach produkcji, czy transportu. W przypadku dwutlenku tytanu większość rodzajów nanocząsteczek jest szkodliwa, z wyjątkiem tych wytwarzanych metodami biologicznymi (przez grzyby lub bakterie, które prawdopodobnie pokrywają nanocząstki ochronnymi proteinami). Jednak wszystkie komercyjnie dostępne nanocząstki TiO2 produkowane są metodami chemicznymi. Co więcej, promieniowanie radiowe zwiększa ich szkodliwość nawet od dwudziestu do czterdziestu razy. Tymczasem domieszkowanie materiałów dwutlenkiem tytanu i innymi katalizatorami jest coraz bardziej powszechne, a nie ma właściwie żadnych badań nad długotrwałymi efektami ich stosowania. Nawet biorąc za dobrą monetę zapewnienia producenta, że mikrocząstki TiO2 nie mogą uwolnić się z materiału, pozostaje zbyt wiele niewiadomych. A tymczasem może się okazać, że długofalowe efekty okażą się brzemienne w skutki, jak to ostatnio dzieje się z ponoć „całkowicie bezpiecznym" Bisfenolem A.
  3. W Stanach Zjednoczonych powstają dwa niezwykle wydajne superkomputery. Obie maszyny mają osiągnąć wydajność 20 petaflopsów i mogą trafić na listę TOP500 w czerwcu 2012 roku. Obecnie najbardziej wydajny superkomputer to chiński Tianhe-1A, który jest w stanie wykonać 2,566 petaflopa w ciągu sekundy. Pierwszy z superkomputerów powstaje w Oak Ridge National Laboratory (ORNL), które obecnie jest w posiadaniu m.in. maszyny Jaguar, drugiego pod względem wydajności superkomputera. Komputer o podobnej mocy buduje też IBM na zlecenie Lawrence Livermore National Laboratory. Ma on zostać dostarczony zamawiającemu już w przyszłym roku, a pełną moc osiągnie w roku 2012. Obecnie jest zbyt wcześnie, by wyrokować, czy powstające amerykańskie maszyny obejmą prowadzenie na liście TOP500. Superkomputery to niezwykle przydatne narzędzia badawcze i bardzo interesują się nimi Chiny. Amerykańscy eksperci twierdzą, że Państwo Środka ma ambicję budowy superkomputera opartego wyłącznie na rodzimej technologii i może zrealizować ten cel w ciągu 12-18 miesięcy. Specjaliści przypuszczają, że projektowana maszyna ma charakteryzować się mocą ponad 1 PFlops. Wiadomo, że Chińczycy już używają własnej technologii. Najpotężniejszy superkomputer świata Tianhe-1A korzysta przede wszystkim z układów Intela oraz Nvidii, ale zastosowano w nim również procesory FeiTeng-1000. To 8-rdzeniowe układy korzystające z architektury Sparc. Są one wykorzystywane do zarządzania węzłami superkomputera. Wiadomo też, że Chiny dysponują własnymi technologiami przesyłu danych szybszymi od otwartego InfiniBand. Wciąż jednak nie dorównują one wydajnością zamkniętym standardom oferowanym przez amerykańskie firmy. Jeremy Smith, dyrektor Centrum Biofizyki Molekularnej w ORNL mówi, że bardzo cieszy go konkurencja, gdyż zwiększające się zainteresowanie superkomputerami przyczynia się do ich rozwoju. W konkurencji z innymi krajami wszyscy wygrywają - dlatego bardzo mi się to podoba - mówi Smith. Jak wspomina, gdy w roku 2002 pojawił się japoński Earth Simulator zaszokował on środowisko, a National Research Council w swoim raporcie stwierdził, że był to dzwonek alarmowy, pokazujący, iż możemy nie tylko stracić przewagę nad konkurencją, ale również, co ważniejsze, zdolność do osiągnięcia własnych celów. Naukowcy z niecierpliwością czekają na pojawienie się komputerów pracujących w eksaskali. Maszyna o wydajności 1 eksaflopsa będzie wykonywała w ciągu sekundy trylion (1018) operacji zmiennoprzecinkowych. To dla nauki oznacza skok jakościowy. System eksaskalowy pozwoli bowiem na dokładne symulowanie pojedynczej komórki. Każdy atom będzie tam reprezentowany - mówi Smith. To z kolei będzie miało kolosalne znaczenie dla rozwoju medycyny, biologii i nauk pokrewnych. Pierwsze systemy eksaskalowe mogą pojawić się jeszcze przed rokiem 2020.
  4. Badania nad zjawiskiem nadprzewodnictwa trwają już 100, a mimo to ludzie wciąż nie potrafią wykorzystać go w codziennych zastosowaniach. Niezwykle przydatne materiały, jakimi są nadprzewodniki, pracują tylko w bardzo niskich temperaturach, możliwość ich wykorzystania jest zatem bardzo ograniczona. Jednak wkrótce może się to zmienić dzięki najnowszym badaniom przeprowadzonym w Oak Ridge National Laboratory. Tamtejsi specjaliści postanowili bowiem sprawdzić, w jaki sposób pracują nadprzewodniki działające w wysokich temperaturach. Zmienili wcześniej wykorzystywane oprogramowanie dla superkomputera tak, by zbadać niejednorodne struktury atomów, występujące w nadprzewodnikach. Takie niejednorodności zauważono już dawno, ale dotychczas nie badano ich szczegółowo. Dotychczas wiedziano, że nierównomierna struktura atomowa odkrywa znaczącą rolę w nadprzewodnictwie. Uczeni z ORNL zauważyli, że mające postać pasków niedoskonałości w strukturze nadprzewodników powodują, iż wykazują one właściwości nadprzewodzące w wyższych temperaturach. To z kolei oznacza, że stają się tańsze i bardziej efektywne. Dzięki odkryciu, że istnienie tych pasków prowadzi do znaczącego wzrostu temperatury krytycznej do uzyskania nadprzewodnictwa, zadaliśmy sobie pytanie: czy istnieje optymalna niejednorodność - mówi Jack Wells z ORNL. Uczeni chcą teraz badać materiały z o różnym stopniu niedoskonałości, by poszukać takiego, który będzie wykazywał nadprzewodnictwo w jak najwyższej temperaturze. Wells przyznaje, że badania nie będą łatwe, jednak, jak zauważa, jego laboratorium dysponuje wszelkimi niezbędnymi zasobami - stworzonym właśnie odpowiednim oprogramowaniem czy badanie struktur w nanoskali za pomocą technik rozpraszania neutronów.
  5. Naukowcy z Oak Ridge National Laboratory wynaleźli materiał, który wodoodpornością przewyższa wszystko, co dotychczas znaliśmy. Jego bardzo istotną cechą jest łatwość produkcji oraz jej niski koszt. Wynalazcy złożyli już odpowiedni wniosek patentowy i zapewniają, że ich materiał przyda się zarówno do produkcji odzieży, jak i pokryć dachowych czy kadłubów statków. Lista potencjalnych zastosowań wydaje się nie mieć końca. Niezwykła nanostruktura nowego materiału powoduje, że pomiędzy materiałem a wodą, zawsze znajduje się cienka warstwa powietrza. Wynalazca materiału, John Simpson, nazwał to „efektem Mojżesza”. Simpson nie jest pierwszym naukowcem, który opracował superwodoodporny materiał. Jednak poprzednie materiały nigdy nie wyszły poza naukowe laboratoria, gdyż są zbyt drogie w produkcji, nie można ich zastosować w odzieży i nie jest możliwe produkowanie ich na skalę przemysłową. Moim celem było opracowanie najlepszej z możliwych powierzchni wodoodpornych. Wynalazłem szklany proszek o niezwykłych właściwościach, który powoduje, że wszelkie roztwory bazujące na wodzie ‘odskakują’ od powierzchni pokrytej tym proszkiem – mówi Simpson. Opracowany przez niego proces polega na zróżnicowanym połączeniu dwóch faz szkła. Naukowiec zaczął od warstwy borokrzemianu, którą podgrzał i zmielił na proszek. Następnie połączył go ze szklanym proszkiem zawierającym boran. Zróżnicowanie połączenie prawiło, że powstał porowaty materiał o niezwykłej nanostrukturze. Simpson potraktował go na koniec roztworem, który zmienił właściwości chemiczne szkła na hydrofobowe. Obecność porów oraz odpowiednia nanostruktura wzmocniły efekt napięcia powierzchniowego cieczy powodując, że nie przyczepia się ona do materiału. Proszek Simpsona jest, jak widzimy, łatwy w produkcji i wystarczy niewielka jego ilość by pokryć dużą powierzchnię. Dodatkową zaletą proszku jest fakt, iż działa on jak termoizolator. Pokryty nim materiał pozostanie zawsze suchy, a pory zapewnią, że będzie on „oddychał”. To jednak nie wszystko. Proszek w większości składa się z amorficznej krzemionki, jest więc bardzo dobrym izolatorem elektrycznym. Jakby jeszcze tego było mało, w dużej mierze chroni on przed powodowaną przez wodę korozją, gdyż woda nie styka się z powierzchnią, którą pokrywa proszek. To, że nie zmokniemy w czasie deszczu, przyniesie nam niewielką osobistą korzyć. Ale zmniejszenie energochłonności transportu wodnego czy przedłużenie żywotności mostów i budynków ma olbrzymie znacznie dla gospodarki, społeczeństwa i pojedynczego człowieka – mówi Simpson.
×
×
  • Create New...