Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Astrofizycy z Australii i Wielkiej Brytanii poinformowali, że znaleźli dowody na to, iż prawa fizyki są różne w różnych częściach wszechświata. Do takiego wniosku doszedł zespół pracujący pod kierunkiem Johna Webba z Uniwersytetu Nowej Południowej Walii.

Naukowcy badali stałą struktury subtelnej, która jest podstawową stałą fizyczną. Opisuje ona siłę oddziaływań elektromagnetycznych i oznaczana jest jako α. Okazuje się, że wielkość ta wcale nie jest stała.

Uczeni wykorzystali teleskop VLT w Chile oraz teleskop Kecka z Hawajów. Za ich pomocą sprawdzili, w jaki sposób światło z 300 galaktyk położonych w odległości 12 miliardów lat świetlnych jest absorbowane  przez atomy pyłu międzygwiezdnego.

Jako że oba teleskopy znajdują się na różnych półkulach Ziemi, muszą być zwrócone w różnych kierunkach.

Porównanie danych z urządzeń wykazało znaczne różnice. Gdy za pomocą teleskopu Kecka patrzymy na północ, to α odległych galaktyk jest średnio mniejsza. Gdy patrzymy na te galaktyki na południe za pomocą VLT - α jest większa - mówi Julian King z University of New South Wales. Różnica jest niewielka, rzędu 1/100 000, ale naukowcy nie wykluczają, że poza horyzontem, który jesteśmy w stanie obserwować, może być ona znacznie większa.

Profesor Webb mówi, że istnieje oś, wzdłuż której alfa ulega zmianie. Sam fakt, że stała struktury subtelnej okazała się zmienną, świadczy o tym, że prawa pozwalające na istnienie życia na Ziemie nie muszą dopuszczać jego pojawienia się w innych obszarach kosmosu. Tam życie może powstawać według całkowicie innych zasad.

Astrofizyk Scott Croom, który nie był zaangażowany w opisywane badania, doradza ostrożność. Mówi, że twierdzenia jego kolegów są rewolucyjne i jeśli się potwierdzą będzie to "fantastyczna rzecz", jednak konieczne są mocne dowody na poparcie ich słów. Przypomina, że podczas tego typu obserwacji łatwo o błędy i już w przeszłości okazywało się, że wiele z obiecujących odkryć okazało się niewypałami, gdyż uzyskane dane zostały zafałszowane przez nieznane wcześniej błędy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Poszperawszy za dokładniejszym opisem:

Stała struktury  subtelnej' date=' oznaczana α, jest równa w przybliżeniu 1/137,036. α jest bezwymiarową kombinacją ładunku elementarnego, stałej Plancka, prędkości światła i przenikalności elektrycznej próżni. Określa ona intensywność kwantowych oddziaływań elektromagnetycznych, te zaś decydują o poziomach energetycznych atomów i cząsteczek, a więc o ich widmie. Pewien fragment widma energetycznego nazywa się, ze względów historycznych, strukturą subtelną i stąd nazwa naszej stałej. Pomiar odległości pomiędzy charakterystycznymi liniami widmowymi dostarcza narzędzia do pomiaru stałej α. Jej wartość jest stała i niezmienna na Ziemi i w bliskiej przestrzeni kosmicznej.[/quote']

 

Ciekawe. Może (tu popuszczam wodze fantazji) nie istnieje w ogóle coś takiego jak początek i koniec Wszechświata, a jedynie fluktuacje stałych fizycznych, tworzące lokalne obszary o podobnych właściwościach i określonym czasie trwania? Opakowani w taką, a nie inną materię nie jesteśmy nawet teoretycznie w stanie przekroczyć pewnej granicy; ale jeśli stałe zmieniają się płynnie, jakiś rodzaj ewolucji mógłby nam pozwolić na przetrwanie nawet „końca” naszego Wszechświata?

:))

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ostatnio było kilka takich newsów - wpływ Słońca na rozpad, harmoniczne ruchy w jądrach platyny, teraz to... czyżby współczesną fizykę czekało całkowite przemeblowanie?

Pewnie Jarek Duda coś mógłby bliżej na ten temat powiedzieć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Szczerze przyznam się, że cieszą mnie takie newsy. Zawsze byłem przeciwny arogancji współczesnej nauki, która dokładnie wiedziała, że coś się da a czegoś się nie da. Zawsze byłem zwolennikiem logicznego myślenia, logicznego i sceptycznego - jednocześnie również perspektywicznego i pokornego wobec świata. I mam niemałą satysfakcję, że "niezmienne elementy rzeczywistości" jednak się zmieniają. Wydaje mi się, że ludzie, którzy w trakcie swojego życia nie przeżyli takiej rewolucji poglądów są zatwardziali, a świat uczy ich, że to co wiedzą, nawet jeśli w tym momencie słuszne, może okazać się nieprawdą już za kilka lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Szczerze przyznam się, że cieszą mnie takie newsy. Zawsze byłem przeciwny arogancji współczesnej nauki, która dokładnie wiedziała, że coś się da a czegoś się nie da.

 

O, przepraszam! Bardzo mi przykro, że wyciągnąłeś takie wnioski od osób, które spotkałeś, albo programów, które oglądałeś, ale tak nie jest. Od pierwszego roku studiów fizyki praktycznie na każdym przedmiocie mieliśmy gdzieś między wierszami wsadzane "no, ale tak to jest teraz, a zobaczymy za parę lat", albo "jak ktoś się z tym nie zgadza to zapraszam do laboratorium". Jest mnóstwo rzeczy o których nie mamy pojęcia i o których wiemy od dawna, że nic o nich nie wiemy. No, ale przecież bardziej medialne są "niestała stała we wszechświecie" niż "dodatkowy refleks absorpcyjny w wolframie". Może teraz ciekawsze badania, albo może lepsza polityka promocji nauki, albo wszyscy nagle wiedzą więcej o świecie i chcą jeszcze więcej wiedzieć... nie wiem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
czyżby współczesną fizykę czekało całkowite przemeblowanie?

 

Podobnie uważają autorzy bloga swiat-jaktodziala.blog.onet.pl – w końcu zawodowi fizycy. Porównują obecną sytuację do tej z końca XIX wieku, kiedy wydawało się, że z grubsza wszystko wiadomo i żadnych rewelacji już nie będzie, a za chwilę posypało się: teorie Einsteina, szkoła kopenhaska, kot Schrödingera, etc. :)

 

Wprawdzie „obyś żył w ciekawych czasach” to klątwa, ale w przypadku fizyki akurat… to przyjemność, nawet dla laika, obserwować nowe odkrycia w nauce.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niestałość poczciwej jednej sto trzydziestej siódmej podejrzewana jest już do czasu odkrycia reaktora w Oklo. Tym razem po raz kolejny mamy doświadczalny dowód - i zaraz będzie z pięć innych teorii tłumaczących błąd pomiaru

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Każdy fizyk-praktyk pomyśli w tym momencie, że należałoby zamienić teleskopy i powtórzyć pomiar. Potrzebna byłaby duża planetoida gzieś w okolicach Australii... (: Jeśli się potwierdzi, to będziemy mieli "górę" i "dół" Wszechświata. Przynajmniej tego widzialnego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Stała struktury subtelnej (α) to być może najważniejsza ze stałych we wszechświecie. Opisuje siłę oddziaływań elektromagnetycznych i jest kombinacją trzech podstawowych stałych przyrody – ładunku elektronu, stałej Plancka i prędkości światła. Istnieje wiele metod pomiaru tej stałej. Zwykle pomiary takie są dokonywane pośrednio, poprzez pomiar innych właściwości fizycznych i obliczenie na tej podstawie wartości α. Na Uniwersytecie Technicznym w Wiedniu (TU Wien) przeprowadzono eksperyment, w trakcie którego udało się po raz pierwszy bezpośrednio zmierzyć wartość stałej struktury subtelnej.
      Stała struktury subtelnej opisuje siłę oddziaływań elektromagnetycznych. Wskazuje, z jaką siłą naładowane cząstki, takie jak elektrony, reagują z polem magnetycznym. Jej wartość wynosi 1/137, gdyby była nieco inna – powiedzmy 1/136 – świat, jaki znamy, nie mógłby istnieć Atomy miałyby inne rozmiary, wszystkie procesy chemiczne przebiegałyby inaczej, inaczej też przebiegałyby reakcje termojądrowe w gwiazdach. Co interesujące, naukowcy spierają się o to, czy stała struktury subtelnej jest rzeczywiście stałą, czy też w ciągu miliardów lat jej wartość uległa niewielkim zmianom.
      Większość ważnych stałych fizycznych to wartości wymiarowe, wyrażane w konkretnych jednostkach, na przykład prędkość światła wyrażamy w metrach na sekundę. Stała struktury subtelnej jest inna. Nie ma tutaj jednostek, to po prostu liczba. Jest to stała bezwymiarowa, wyjaśnia profesor Andrei Pimenow z Instytutu Fizyki Ciała Stałego na TU Wien.
      Pimenov oraz jego koledzy z TU Wien i naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles przeprowadzili pierwszy eksperyment, podczas którego możliwe było dokonanie bezpośrednich pomiarów wartości stałej struktury subtelnej.
      Światło lasera jest spolaryzowane liniowo, oscyluje wertykalnie. Gdy podczas eksperymentu trafia na dysk z materiału o grubości liczonej w nanometrach, jego polaryzacja ulega zmianie. Samo w sobie nie jest to niczym niezwykłym. Wiele materiałów powoduje zmianę polaryzacji światła laserowego. Dzięki interakcji fotonów z polem elektromagnetycznym można polaryzację można obracać. Przy silnych polach magnetycznych i w niskich temperaturach pojawia się kwantowy efekt Halla, a zmiany polaryzacji są proporcjonalne do stałej struktury subtelnej. Jednak konieczność używania silnego pola magnetycznego powoduje, że trzeba uwzględnić je w równaniach opisujących α, co utrudnia przygotowanie eksperymentu.
      Podczas ostatniego eksperymentu naukowcy wykorzystali światło terahercowego lasera, które nakierowali na cienki dysk izolatora topologicznego o wzorze chemicznym (Cr0.12Bi0.26Sb0.62)2Te3. Materiał zawiera chrom, ma więc wbudowane pole magnetyczne. Gdy naukowcy przyjrzeli się zmianie polaryzacji światła po przejściu przez dysk okazało się, że doszło do skokowej, a nie płynnej, zmiany kąta polaryzacji i wynosiła ona tyle, ile wartość α. Stała struktury subtelnej jest tutaj natychmiast widoczna jako kąt, cieszy się Pimenov.
      I mimo że pomiary te nie dały tak dokładnego wyniku, jak pomiary pośrednie, to – jak podkreśla Pimenov – główną korzyścią jest tutaj możliwość otrzymania podstawowej stałej fizycznej z bezpośredniego eksperymentu, a nie poleganie na innych pomiarach i precyzji kalibracji sprzętu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najbardziej precyzyjny z dotychczasowych pomiarów wartości stałej struktury subtelnej zarysowuje nowe granice dla teorii mówiących o istnieniu ciemnej materii czy ciemnej energii. Nowa wartość to nie tylko dodatkowy test Modelu Standardowego, ale i wskazówka, gdzie należy poszukiwać ciemnej materii, która wraz z ciemną energią stanowi ponad 90% masy wszechświata.
      Stała struktury subtelnej to kombinacja trzech stałych fundamentalnych, stałej Plancka, ładunku elektronu oraz prędkości światła. Łącznie określają one siłę oddziaływań elektromagnetycznych, przez co stała struktury subtelnej powszechnie występuje we wszechświecie. Jako, że jest to wielkość bezwymiarowa, niezależna od systemu jednostek, jest w pewnym sensie bardziej podstawowa niż inne stałe fizyczne, których wartość zmienia się w zależności od systemu.
      Niewielka wartość stałej struktury subtelnej, wynosząca około 1/137 wskazuje, że oddziaływania elektromagnetyczne są słabe. To zaś oznacza, że elektrony znajdujące się na orbitach w pewnej odległości od jądra atomu mogą tworzyć wiązania i budować molekuły. To właśnie ta ich właściwość umożliwiła powstanie gwiazd czy planet. Wielu fizyków twierdzi, że takiej a nie innej wartości stałej struktury subtelnej zawdzięczamy własne istnienie. Gdyby bowiem była ona nieco większa lub nieco mniejsza, gwiazdy nie mogłyby syntetyzować cięższych pierwiastków, takich jak np. węgiel. Życie w znanej nam postaci by więc nie istniało.
      Dotychczasowe pomiary stałej struktury subtelnej umożliwiły prowadzenie precyzyjnych testów zależności pomiędzy cząstkami elementarnymi. Zależności te są opisane równaniami, tworzącymi Model Standardowy. Każda niezgodność pomiędzy przewidywaniami Modelu a obserwacjami może wskazywać na istnienie nieznanych zjawisk fizycznych.
      Zwykle stałą struktury subtelnej mierzy się określając siłę odrzutu atomów absorbujących fotony. Energia kinetyczna tego odrzutu pozwala określić masę atomu. Następnie, na podstawie precyzyjnej znajomości stosunku masy atomu do elektronu, obliczamy masę elektronu. W końcu możemy określić stałą struktury subtelnej z masy elektronu oraz siły wiązań atomowych w wodorze.
      Naukowcy pracujący pod kierunkiem profesor Saidy Guellati-Khelifa z Laboratoire Kastler-Brossel schłodzili atomy rubidu do temperatury kilku stopni powyżej zera absolutnego. Następnie za pomocą lasera stworzyli superpozycję dwóch stanów atomowych. Pierwszy ze stanów odpowiadał atomom odrzucanym w wyniku zaabsorbowania fotonów, drugi zaś, atomom, które nie doświadczają odrzutu. Atomy w różnych stanach różnie propagowały się wewnątrz komory próżniowej. Naukowcy dodali wówczas drugi zestaw impulsów laserowych, który doprowadził do „ponownego połączenia” obu części superpozycji.
      Im większy był odrzut atomu absorbującego fotony, tym większe przesunięcie fazy względem jego własnej wersji, która nie doświadczała odrzutu. Uczeni wykorzystali tę różnicę do określenia masy atomu, z której następnie wyliczyli stałą struktury subtelnej. W ten sposób określili jej wartość na 1/137,035999206(11). Precyzja pomiaru wynosi 81 części na bilion, jest więc 2,5-krotnie większa niż poprzedni najbardziej precyzyjny pomiar wykonany w 2018 roku na Uniwersytecie Kalifornijskim w Berkeley.
      Różnica pomiędzy pomiarem obecnym, a tym z Berkeley rozpoczyna się na 7. cyfrze po przecinku. To zaskoczyło francuskich naukowców, gdyż wskazuje, że albo jedne z pomiarów, albo oba, zawierają nieznany błąd. Autor pomiaru z Berkeley, Holger Müller, komentuje, że wynik uzyskany przez Francuzów potwierdza, iż elektron nie posiada mniejszych struktur i rzeczywiście jest cząstką elementarną.
      Francuzi planują teraz potwierdzić wyniki swoich pomiarów korzystając z innego izotopu rubidu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Kosmologowie od dawna mają problem z jedną z podstawowych wartości opisujących wszechświat – tempem jego rozszerzania się. Różne pomiary przynoszą bowiem różne wartości. Teraz coraz wyraźniej widać kolejne pęknięcie w standardowym modelu kosmologicznym. Niedawno grupa naukowców wykazała, że wszechświat jest niespodziewanie rzadki. Materia nie gromadzi się w nim tak, jak się spodziewano. Podobne sygnały pojawiały się już wcześniej, tym razem jednak mamy do czynienia z najbardziej szczegółową analizą danych zbieranych przez 7 lat.
      Dane są na tyle wiarygodne, że niektórzy specjaliści zastanawiają się, czy nie wpadliśmy na trop czegoś nieznanego. Mamy już ciemną materię i ciemną energię. Mam nadzieję, że do wyjaśnień nie potrzebujemy kolejnej ciemnej rzeczy, mówi Michael Hudson, kosmolog z University of Waterloo, który nie był zaangażowany w najnowsze badania.
      Autorzy najnowszych badań, skupieni wokół inicjatywy Kilo-Degree Survey (KiDS), obserwowali około 31 milionów galaktyk, położonych w promieniu do 10 miliardów lat świetlnych od Ziemi. Na podstawie tych obserwacji wyliczyli średni rozkład niewidocznego gazu i ciemnej materii we wszechświecie. Odkryli, że jest jej niemal o 10% mniej niż przewiduje jeden z najpowszechniej uznawanych modeli kosmologicznych, Model Lambda-CDM.
      W ciągu ostatnich ośmiu lat pojawiło się kilkanaście badań, których autorzy – korzystając z różnych technik – dochodzili do wniosku, że materia nie gromadzi się zgodnie z przewidywaniami. Rozpatrywane osobno badania te nie mają większego znaczenia. Rozważane w nich kwestie są tak trudne do zbadania, że łato mogło dojść do pomyłek. Jednak coraz częściej pojawiają się głosy, że to nie statystycznie dopuszczalne niedoskonałości w badaniach, ale reguła. Gdy w wielu różnych zestawach danych zaczynasz dostrzegać tę samą rzecz, musisz wziąć pod uwagę, że coś w tym jest, stwierdza Hudson.
      Naukowcy muszą teraz pogodzić dwie sprzeczne ze sobą rzeczy. Z jednej strony, by określić tempo rozszerzania się wszechświata – w wiele wskazuje na to, że jest ono większe, niż sądzono – muszą znaleźć dodatkowy element, który go napędza. Z drugiej jednak strony skoro materia nie gromadzi się razem tak, jak przypuszczano, do siły na nią oddziałujące są słabsze, a nie mocniejsze, jak wymagałoby tego wyjaśnienie tempa rozszerzania się wszechświata. Julien Lesgourgues, kosmolog-teoretyk z Uniwersytetu Aachen mówi, że znalezienie satysfakcjonującego wyjaśnienia obu tych zjawisk będzie koszmarem.
      Podejmowane są pewne próby wyjaśnień wspomnianych zjawisk. Przyspieszenie ekspansji wszechświata można by wyjaśnić „ciemnym promieniowaniem”. Jednak trzeba by je zbilansować dodatkową materią, która by się grupowała. Aby osiągnąć obserwowane mniejsze grupowanie się, trzeba by wprowadzić dodatkowy element, który to uniemożliwia. Tutaj pojawia się próba wyjaśnienia w postaci zamiany ciemnej materii – która powoduje grupowanie się materii – w ciemną energię, powodującą jej oddalanie się od siebie. Można też przyjąć, że Ziemia znajduje się w jakimś wielkim bąblu rozrzedzonej materii, co zaburza nasze obserwacje. Lub też uznać, że szybkie tempo rozszerzania się wszechświata i mniejsze grupowanie się materii nie są ze sobą powiązane. Nie widzę obecnie żadnego satysfakcjonującego wyjaśnienia. Jeśli jednak byłbym teoretykiem byłbym bardzo podekscytowany, mówi Hudson.
      Wciąż też istnieje prawdopodobieństwo, że oba omawiane zjawiska lub przynajmniej jedno z nich, w rzeczywistości nie mają miejsca. Jednak by to stwierdzić, trzeba poczekać na inne dane. KiDS to jeden z trzech dużych projektów badawczych. Inne to międzynarodowy Dark Energy Survey prowadzony w Chile i japoński Hyper Suprime-Cam. W ramach każdego z nich skanowany jest inny fragment nieboskłonu na inną głębokość. W czasie ostatniej kampanii Dark Energy Survey przeskanowano obszar 5-krotnie większy niż badał KiDS. Wyniki powinny ukazać się w ciągu najbliższych miesięcy. Wszyscy na nie czekają. To kolejna wielka rzecz w kosmologii, mówi Daniel Scolnic, kosmolog z Duke University, który specjalizuje się w badaniu tempa rozszerzania się wszechświata.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zdaniem międzynarodowego zespołu naukowego, wszechświat jest pełen planet zawierających wodę. Uczeni uważają, że jest ona ważnym składnikiem egzoplanet o rozmiarach od 2 do 4 wielkości Ziemi.
      To była dla nas wielka niespodzianka, gdy zdaliśmy sobie sprawę, że musi być tak dużo wodnych światów, mówi główny autor badań, doktor Li Zen z Uniwersytetu Harvarda. Z badań, przeprowadzonych za pomocą teleskopów Keplera i Gaia wynika bowiem, że wiele ze znanych nam egzoplanet zawiera do 50% wody. Dla porównania, na Ziemi woda stanowi zaledwie 0,02% masy planety.
      Wiele z potwierdzonych dotychczas około 4000 egzoplanet można zaliczyć do jednej z dwóch kategorii: takich, których średnica wynosi około 1,5 średnicy Ziemi oraz takich o średnicy około 2,5 średnicy naszej planety. Po przeanalizowaniu średnic i mas badanych egzoplanet uczeni stworzyli model ich budowy.
      Sprawdziliśmy, jak masa ma się do średnicy i stworzyliśmy model wyjaśniający tę zależność, mówi Li Zeng. Wynika z niego, ze planety o średnicy do 1,5 średnicy Ziemi to zwykle światy skaliste o masie 5-krotnie większej niż masa naszej planety. Z kolei te o średnicy 2,5-krotnie większej od średnicy Ziemi mają masę 10-krotnie większą od naszej planety i są światami wodnymi.
      Tam występuje woda, ale nie jest ona tak powszechnie dostępna jak na Ziemi. Temperatury powierzchni tych planet wynoszą 200–500 stopni Celsjusza, są otoczone atmosferą zdominowaną przez parę wodną z płynną warstwą poniżej. W głębi planety woda ta, pod wpływem wysokiego ciśnienia, została prawdopodobnie zmieniona w lód. Jeszcze niżej jest skaliste jądro planety. Piękno naszego modelu polega na tym, że wyjaśnia nam, jak skład planety ma się do znanych nam danych na jej temat, mówi Li Zeng.
      Nasze dane wskazują, że około 35% egzoplanet większych od Ziemi powinno być bogate w wodę. Te wodne światy formowały się w podobny sposób, jak jądra dużych planet Układu Słonecznego. Niedawno rozpoczęta misja TESS pozwoli na znalezienie większej ich liczby, a w przyszłości teleskop Jamesa Webba pozwoli na zbadanie ich atmosfery. To ekscytujący okres dla badaczy egzoplanet, stwierdza uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Włosko-amerykańskiemu zespołowi naukowemu udało się odnaleźć ostatni we wszechświecie rezerwuar zaginionej materii. Tej materii, która jest widoczna i jest złożona z barionów. Dotychczas astrofizycy potrafili zlokalizować około 2/3 materii stworzonej podczas Wielkiego Wybuchu.
      Teraz międzynarodowy zespół naukowy stwierdził, że reszta znajduje się pomiędzy galaktykami, w postaci gazu o temperaturze około miliona stopni Celsjusza. Odkrycie jest bardzo ważne dla astrofizyki. Jednym z kluczowych elementów pozwalających na przetestowanie teorii Wielkiego Wybuchu jest dokonanie dokładnego spisu barionów helu, wodoru i wszystkich innych pierwiastków, wyjaśnia współautor badań Michael Shull.
      Obecnie wiemy, że około 10% materii tworzy galaktyki, a około 60% znajduje się w chmurach gazu pomiędzy nimi. W 2012 roku Shull i jego zespół postawili hipotezę, że brakujące 30% barionów ulokowało się w ciepłym ośrodku międzygalaktycznym (WHIM, Warm-Hot Intergalactic Medium). W celu potwierdzenia hipotezy naukowcy zaczęli satelitarne obserwacje kwazara 1ES 1553. To bardzo jasno świecąca czarna dziura. Obserwując tego typu struktury, można określić, jak promieniowania rozchodzi się w kosmosie.
      Dzięki teleskopom Hubble'a i XMM-Newton odkryto sygnatury wysoce zjonizowanego tlenu leżącego pomiędzy kwazarem an Układem Słonecznym. Jego gęstość jest wystarczająca, by – po ekstrapolacji na cały wszechświat – można było powiedzieć o odnalezieniu brakujących 30% materii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...