Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Dwóch znanych klimatologów, holenderski laureat Nagrody Nobla Paul J. Crutzen oraz ekspert rządu USA Tom Wigley, zaproponowali niezwykłą metodę ochrony Ziemi przed efektem cieplarnianym. Gdyby klimat naszej planety stał się zbyt gorący należy, ich zdaniem, wypuścić do atmosfery olbrzymią chmurę... siarki.

Crutzen, główny autor pomysłu, który w 1995 roku został nagrodzony przez Komitet Noblowski za prace nad tworzeniem się ozonu w atmosferze, uważa, że metodę tą być może będzie trzeba zastosować już około roku 2025.

Warstwa siarki odbijałaby promienie słoneczne z powrotem w przestrzeń kosmiczną. Odpowiedzialny za efekt cieplarniany dwutlenek węgla przepuszcza je w kierunku Ziemi, a nie pozwala wypromieniowywać w kosmos ciepłu, odbijanemu przez jej powierzchnię.

Tom Wigley przeprowadził odpowiednie symulacje komputerowe, z których wynika, że wypuszczenie do atmosfery pięciu milionów ton siarki pozwoliłoby na obniżenie temperatury na Ziemi o 0,9 stopnia rocznie. Jego zdaniem taka metoda mogłaby być stosowana, dopóki ludzkości nie zmniejszyłaby emisji dwutlenku węgla.

Metoda ta nie jest, niestety, pozbawiona wad. Siarka może powodować poważne problemy zdrowotne u wielu osób. Światowa Organizacja Zdrowia ocenia, że zanieczyszczenie powietrza, w tym siarką, zabija rocznie około 2 milionów osób na Ziemi. Ponadto niektórzy ludzie reagują ciężkimi alergiami na związki siarki.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Tom Wigley przeprowadził odpowiednie symulacje komputerowe, z których wynika, że wypuszczenie do atmosfery pięciu milionów ton siarki pozwoliłoby na obniżenie temperatury na Ziemi o 0,9 stopnia rocznie. Jego zdaniem taka metoda mogłaby być stosowana, dopóki ludzkości nie zmniejszyłaby emisji dwutlenku węgla.

 

Powini mu zabrać tytuł naukowy za takie bzdury. Siarka pochłania promieniowanie w szerokim zakresie , już są kwaśne deszcze a jeszcze mielibyśmy szarówkę każdego dnia ( co z roślinami i uprawami). 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

On nie napisał, że jest to rozwiązanie całości problemów ekologicznych, a jedynie problemu wzrostu temperatury. Dziwię się, że z takim poziomem czytania ze zrozumieniem sam masz tytuł.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Powini mu zabrać tytuł naukowy za takie bzdury. Siarka pochłania promieniowanie w szerokim zakresie , już są kwaśne deszcze a jeszcze mielibyśmy szarówkę każdego dnia ( co z roślinami i uprawami). 8)

 

rzeczywiście jeżeli to miałoby powodować kwaśne deszcze to niszczejące rośliny produkowałyby mniej tlenu czyli ilość CO2 mogłaby się zwiększyć (tak mikroos czytanie ze zrozumieniem LOL) co nie byłoby najprawdopodobniej pożądanym efektem. ja bym proponował cząsteczki złota - nie wiem dokładnie co i jak, ale o naprawianiu atmosfery złotem pisze niejeden text starożytny (tak mikroos tu niebawem jak będe miał czas wstawie dokładne cytaty)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zamiast "brudzić" atmosferę siarką, lepiej chyba oczyścić ją z dwutlenku węgla. Wydaje mi się, że wystarczy do tego zamontować w każdym samochodzie urządzenie filtrujące powietrze, a za 10-15 lat tych urządzeń będzie już wiele... i będą świetnie oczyszczać powietrze... są już przecież technologie produkcji z dwutlenku węgla wodoru albo alkoholi (przy pomocy bakterii) więc można taki dwutlenek węgla albo składować w aucie w filtrze a później przetwarzać w jakiść specjalnych zakładach albo od razu przetwarzać w aucie... nie wiem na ile technika pozwoli... PS. są już samochody które wytwarzają czystrze powietrze niż zasysają... :-) więc co za problem to upowszechnić.... można odgórnie wprowadzić np. w całej Uni przepis najazujący stosowanie takich urządzeń (filtrów).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przestańmy się ludzie zajmować tym dwutlenkiem węgla, są, wbrew pozorom, wazniejsze sprawy ;D A tej unii to już w ogóle nie trawię.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przestańmy się ludzie zajmować tym dwutlenkiem węgla

O, o, o! To jest ta myśl.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Możliwym i stosunkowo tanim rozwiązaniem byłby skroplony azot, który pochłaniając ciepło z otoczenia by się rozprężał, a silnik w samochodzie na spręzone powietrze. Podczas skraplania azotu również dwutlenek węgla, pyły z atmosfery , aerozole, radon z atmosfery można by usuwać. Do spręzania pompy z silnikami elektrycznymi na drugiej taryfie. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Najpierw trzeba by go skroplić, a wtedy wydaliłby mnóstwo ciepła.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A to ciepło do przygotowania ciepłej wody do mycia, ogrzewania budynków itd.... 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
      W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
      Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
      Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
      Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
      Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tegoroczną Nagrodą Nobla z chemii podzielą się Benjamin List z Niemiec i David MacMillan z USA, zdecydowała Szwedzka Królewska Akademia Nauk. Nagrodę przyznano za rozwój asymetrycznej katalizy organicznej. Prace Lista i MacMillana mają olbrzymi wpływ na tworzenie nowych leków, a przy okazji czynią procesy chemiczne bardziej przyjazne środowisku naturalnemu.
      Bardzo wiele dziedzin nauki i obszarów działalności przemysłowej jest zależnych od możliwości tworzenia molekuł o pożądanych właściwościach. Takich, dzięki którym powstaną wytrzymałe materiały, w których będzie można przechowywać energię czy molekuł służących do walki z chorobami. Stworzenie takich cząsteczek wymaga użycia odpowiednich katalizatorów, substancji pozwalających kontrolować i przyspieszać reakcje chemiczne, ale które nie wchodzą w skład finalnego produktu tych reakcji. Katalizatory są wszechobecne. Mamy je też w naszych organizmach, gdzie katalizatorami są enzymy, biorące udział w wytwarzaniu związków chemicznych niezbędnych do życia.
      Przez całe dziesięciolecia uważano, że katalizatorami mogą być jedynie metale lub enzymy. Jednak w 2000 roku dowiedzieliśmy się, że istnieje trzeci rodzaj katalizatorów, gdy Benjamin List i David MacMillan – niezależnie od siebie – odkryli proces asymetrycznej katalizy organicznej, który opiera się na niewielkich molekułach organicznych.
      Ten pomysł na przeprowadzenie katalizy jest tak prosty i genialny, że aż rodzi się pytanie, dlaczego nikt nie wpadł na to wcześniej, powiedział Johan Åqvist, przewodniczący zespołu przyznającego Nagrodę Nobla z chemii.
      Naukowcy przez dziesięciolecia mogli tylko z zazdrością patrzeć na możliwości enzymów, dzięki którym natura tworzy niezwykle złożone cząsteczki. Nauka jednak powoli szła do przodu i nasze możliwości również się zwiększały. Na przełomie wieków, dzięki Listowi i MacMillanowi nasze zdolności w tym zakresie znacząco się zwiększyły. Obaj uczeni przenieśli możliwości tworzenia molekuł na całkowicie nowy poziom. Opracowali proce, który nie tylko jest mniej szkodliwy dla środowiska, ale przede wszystkim znacząco zwiększa możliwości tworzenie molekuł asymetrycznych.
      Chemicy przez długie lata mieli problem z tym, że wiele molekuł występuje w dwóch postaciach – odbić lustrzanych, które jednak nie są identyczne. Są obiektami chiralnymi, o różnych właściwościach. Za przykład może tutaj posłużyć limonen, cząsteczka odpowiadająca za zapach cytryny, której lustrzane odbicie daje zapach pomarańczy. Problem w tym, że zwykle potrzebujemy konkretnej wersji danej molekuły. Jest to wyjątkowo ważne przy produkcji leków. A gdy w procesie katalizy powstaną obie wersje, trzeba te wymieszane bliźniaczo podobne molekuły zidentyfikować i od siebie oddzielić, co nie jest łatwym zadaniem.
      W XIX wieku chemicy zauważyli niezwykłe zjawisko. Na przykład gdy do nadtlenku wodoru (H202) dodali srebra, dochodziło do pojawienia się wody (H2O) i tlenu (O2), jednak wydawało się, że cała ta reakcja nie miała żadnego wpływu na srebro. W 1835 roku szwedzki chemik Jacob Berzelius opisał taki proces na kilkunastu różnych przykładach i nazwał to zjawisko katalizą.
      Z czasem odkryto olbrzymią liczbę katalizatorów, dzięki którym można było łączyć lub rozdzielać molekuły. Proces katalizy zaczęto wykorzystywać tak powszechnie, że obecnie około 35% światowego PKB w jakiś sposób jest z nim związane. Jednak przed rokiem 2000 wszystkie znane katalizatory były albo metalami albo enzymami. Metale są świetnymi katalizatorami, ale mają poważną wadę – są bardzo wrażliwe na działanie tlenu i wody. Zatem do pracy często potrzebują beztlenowego suchego środowiska, a jego uzyskanie w wielkoskalowych procesach przemysłowych jest bardzo trudne. Ponadto wiele świetnych katalizatorów to szkodliwe dla środowiska i człowieka metale ciężkie.
      Drugim z rodzajów katalizatorów są enzymy. Jako, że są niezwykle wydajne, w latach 90. ubiegłego wieku prowadzono intensywne prace nad stworzeniem nowych enzymów do katalizy. Prace takie trwały też w Scripps Research Institute, w którym pracował Benjamin List.
      Naukowiec obserwując sposób działania enzymów zwrócił uwagę na fakt, że mimo iż często zawierają one metale, to wiele enzymów katalizuje procesy chemiczne bez pomocy metali. Wykorzystują jedynie aminokwasy. List zaczął więc się zastanawiać, czy aminokwasy te muszą być częścią enzymów, by prowadzić katalizę czy też mogą działać samodzielnie lub będąc częścią jakiejś prostszej cząstki.
      Naukowiec wiedział, że latach 70. prowadzono prace nad wykorzystaniem aminokwasu o nazwie prolina w procesie katalizy, ale je zarzucono. List przypuszczał, że stało się tak, gdyż pomysł nie wypalił. Mimo to, postanowił spróbować. Przeprowadził test, by sprawdzić, czy prolina może być katalizatorem reakcji aldolowej, w której atomy węgla z dwóch różnych molekuł łączą się ze sobą. Ku jego zdumieniu aminokwas świetnie się w tej roli sprawdził. W trakcie kolejnych eksperymentów List wykazał, że prolina nie tylko jest wydajnym katalizatorem, ale również może być wykorzystana w katalizie asymetrycznej, w trakcie której znacznie częściej powstaje tylko jedno z dwóch odbić lustrzanych molekuły. W porównaniu z metalami i enzymami prolina ma wiele zalet. Jest prostą, tanią i przyjazną środowisku molekułą. Naukowiec przygotował artykuł, który zaakceptowano do publikacji. Miał się on ukazać w lutym 2000 roku.
      Jednak List nie był jedynym, który w tym czasie pracował nad takim rozwiązaniem.
      David MacMillan pracował na Uniwersytecie Harvarda z metalami w roli katalizatorów. O ile w laboratorium łatwo jest o dobre warunki do pracy takich katalizatorów, to w przemyśle jest to bardzo trudne. Dlatego gdy przeniósł się z Harvarda na Uniwersytet Kalifornijski w Berkeley zarzucił prace nad metalami i zaczął projektować proste molekuły organiczne, które – podobnie jak metale – miały uwalniać lub więzić elektrony. Wybrał kilka molekuł i testował je w roli katalizatorów reakcji Dielsa-Aldera, której produktem jest węglowodór cykliczny.
      Okazało się, że wykorzystane molekuły bardzo dobrze się sprawują, a niektóre z nich świetnie sobie radzą w reakcjach asymetrycznych. W wyniku ich pracy w ponad 90% przypadków powstawała tylko jedna z dwóch wersji poszukiwanej cząsteczki. W styczniu 2000 roku, na miesiąc przed ukazaniem się artykułu z wynikami pracy Lista, uczony przesłał do czasopisma naukowego swój własny artykuł. Nazwał w nim zaobserwowane przez siebie zjawisko katalizą organiczną.
      Od 2000 roku prace nad katalizą organiczną ruszyły z kopyta. W procesie tym nie tylko wykorzystuje się proste łatwe do uzyskania molekuły, ale w niektórych przypadkach cząsteczki te, podobnie jak enzymy, potrafią działać w systemie „pracy ciągłej”. Wcześniej konieczne było po każdym etapie procesu chemicznego wyizolowanie i oczyszczenie produktu przejściowego, w przeciwnym razie na końcu całego procesu uzyskiwano zbyt dużo produktu ubocznego. Dzięki katalizie organicznej często można przeprowadzić wiele kroków procesu produkcyjnego jednym ciągiem. Dzięki takiej reakcji kaskadowej znacząco zmniejsza się liczba odpadów w przemyśle chemicznym.
      Przykładem, jak bardzo wynalazek Lista i MacMillana zrewolucjonizował produkcję chemiczną niech będzie strychnina. Gdy w 1952 roku została po raz pierwszy zsyntetyzowana, konieczne było użycie 29 różnych reakcji chemicznych, jedynie 0,00009% oryginalnego materiału utworzyło strychninę. Reszta się zmarnowała. W 2011 roku dzięki katalizie organicznej produkcję strychniny uproszczono do 12 kroków, a sam proces był 7000 razy bardziej wydajny.
      Benjamin List urodził się w 1968 roku we Frankfurcie nad Menem w Niemczech. prace doktorską obronił na Uniwersytecie Goethego. Obecnie jest profesorem na Uniwersytecie w Kolonii i dyrektorem Instytutu Badań nad Węglem im. Maxa Plancka. Jest też głównym badacze w Instytucie Projektowania Reakcji Chemicznych na Hokkaido University.
      David MacMillan urodził się w 1968 roku w Bellshill w Szkocji. W wieku 22 lat wyjechał do USA by rozpocząć studia doktoranckie na Uniwersytecie Kalifornijskim w Irvine. Później pracował na Uniwersytecie Harvarda i Uniwersytecie Kalifornijskim w Berkeley. Obecnie jest pracownikiem Princeton University. Był też założycielem i pierwszym dyrektorem pisma Chemical Science, wydawanego przez brytyjskie Royal Society of Chemistry.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Już wkrótce elektrownia węglowa Dry Fork znajdująca się w pobliżu miasteczka Gillette w stanie Wyoming będzie wykorzystywała dwutlenek węgla do produkcji materiałów budowlanych. W marcu w elektrowni rozpoczyna się program pilotażowy, w ramach którego CO2 będzie zmieniane w betonowe bloczki.
      Eksperyment prowadzony będzie przez naukowców z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Przez try miesiące każdego dnia będą oni odzyskiwali 0,5 tony dwutlenku węgla i wytwarzali 10 ton betonu. To pierwszy system tego typu. Chcemy pokazać, że można go skalować, mówi profesor Gaurav Sant, który przewodzi zespołowi badawczemu.
      Carbon Upcycling UCLA to jeden z 10 zespołów biorących udział a ostatnim etapie zawodów NRG COSIA Carbon XPrize. To ogólnoświatowe zawody, których uczestnicy mają za zadanie opracować przełomową technologię pozwalającą na zamianę emitowanego do atmosfery węgla na użyteczny materiał.
      W Wyoming są jeszcze cztery inne zespoły, w tym kanadyjski i szkocki. Pozostałych pięć drużyn pracuje w elektrowni gazowej w Kanadzie. Wszyscy rywalizują o główną nagrodę w wysokości 7,5 miliona dolarów. Zawody zostaną rozstrzygnięte we wrześniu.
      Prace UCLA nad nową technologią rozpoczęto przed około 6laty, gdy naukowcy przyjrzeli się składowi chemicznemu... Wału Hadriana. Ten wybudowany w II wieku naszej ery wał miał bronić Brytanii przed najazdami Piktów.
      Rzymianie budowali mur mieszając tlenek wapnia z wodą, a następnie pozwalając mieszaninie na absorbowanie CO2 z atmosfery. W ten sposób powstawał wapień. Proces taki trwa jednak wiele lat. Zbyt długo, jak na współczesne standardy. Chcieliśmy wiedzieć, czy reakcje te uda się przyspieszyć, mówi Guarav Sant.
      Rozwiązaniem problemu okazał się portlandyt, czyli wodorotlenek wapnia. Łączy się go z kruszywem budowlanym i innymi materiałami, uzyskując wstępny materiał budowlany. Następnie całość trafia do reaktora, gdzie wchodzi w kontakt z gazami z komina elektrowni. W ten sposób szybko powstaje cement. Sant porównuje cały proces do pieczenia ciastek. Mamy oto bowiem mokre „ciasto”, które pod wpływem temperatury i CO2 z gazów kominowych zamienia się w użyteczny produkt.
      Technologia UCLA jest unikatowa na skalę światową, gdyż nie wymaga kosztownego etapu przechwytywania i oczyszczania CO2. To jedyna technologia, która bezpośrednio wykorzystuje gazy z komina.
      Po testach w Wyoming cała instalacja zostanie rozmontowana i przewieziona do National Carbon Capture Center w Alabamie. To instalacja badawcza Departamentu Energii. Tam zostanie poddana kolejnym trzymiesięcznym testom.
      Na całym świecie wiele firm i grup naukowych próbuje przechwytywać CO2 i albo go składować, albo zamieniać w użyteczne produkty. Jak wynika z analizy przeprowadzonej przez organizację Carbon180, potencjalna wartość światowego rynku odpadowego dwutlenku węgla wynosi 5,9 biliona dolarów rocznie, w tym 1,3 biliona to produkty takie jak cementy, asfalty i kruszywa budowlane. Zapotrzebowanie na takie materiały ciągle rośnie, a jednocześnie coraz silniejszy akcent jest kładziony na redukcję ilości węgla trafiającego do atmosfery. To zaś tworzy okazję dla przedsiębiorstw, które mogą zacząć zarabiać na przechwyconym dwutlenku węgla.
      Cement ma szczególnie duży ślad węglowy, gdyż jego produkcja wymaga dużych ilości energii. Każdego roku na świecie produkuje się 4 miliardy ton cementu, a przemysł ten generuje około 8% światowej emisji CO2. Przemysł cementowy jest tym, który szczególnie trudno zdekarbonizować, brak więc obecnie efektywnych rozwiązań pozwalających na zmniejszenie emisji węgla. Technologie wykorzystujące przechwycony CO2 mogą więc wypełnić tę lukę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tegoroczne Nagrody Nobla z dziedziny fizyki zostały przyznane za wkład w zrozumienie ewolucji wszechświata i miejsca Ziemi w kosmosie. Otrzymali je James Peebles za teoretyczne odkrycia w dziedzinie kosmologii fizycznej oraz Michel Mayor i Didier Queloz za odkrycie egzoplanety krążącej wokół gwiazdy typu Słońca.
      James Peebles to Kanadyjczyk pracujący obecnie na Princeton University. Michel Mayor jest Szwajcarem, pracuje na Uniwersytecie w Genewie. Podobnie zresztą jak Didier Queloz, który dodatkowo zatrudniony jest na Cambridge University.
      Profesor Peebles, odpowiadając podczas konferencji prasowej na pytanie o możliwość istnienia życia na innych planetach, stwierdził: Ironią jest, że możemy być pewni, że istnieje wiele planet zdolnych do podtrzymania życia [...], ironią jest, że mamy wizję życia na innych planetach, ale możemy być pewni, że nigdy nie zobaczymy tych form życia, tych planet. To pokazuje, jak wielkie są możliwości i jak wielkie są ograniczenia nauki, powiedział noblista.
      Niestety, wbrew naszym oczekiwaniom, tegorocznym laureatem nie został profesor Artur Ekert, o którego szansach na nagrodę informowaliśmy wczoraj.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jutro w Sztokholmie zostanie ogłoszony laureat tegorocznej Nagrody Nobla z fizyki. Wśród kandydatów do tego wyróżnienia znajduje się Polak, profesor Artur Ekert z Uniwersytetu Oksfordzkiego.
      Jak poinformowała szwedzka agencja informacyjna TT, powołując się na rankingi cytowań amerykańskiej firmy Clarivate Analytics, Ekert miałby być branym pod uwagę ze względu na dużą liczbę cytowań jego prac. Ponadto przemawiają za nim jego badania nad technologiami informatycznymi, w tym nad kryptografią kwantową.
      Artur Ekert urodził się 1961 roku we Wrocławiu. Studiował fizykę na Uniwersytecie Jagiellońskim i Uniwersytecie Oksfordzim. W latach 1987-1991 był doktorantem na Oksfordzie, gdzie studiował pod kierunkiem wybitnego fizyka Davida Deutscha, twórcy pierwszego kwantowego algorytmu obliczeniowego. W swojej pracy doktorskiej Ekert pokazał, jak można wykorzystać splątanie kwantowe do zabezpieczenia informacji.
      Po ukończeniu studiów doktoranckich Ekert został na Uniwersytecie Oksfordzkim, gdzie był założycielem grupy naukowej, która z czasem przekształciła się w Centre for Quantum Computation. Jest profesorem fizyki na Uniwersytecie Oksfordzkim oraz profesorem honorowym na Narodowym Uniwersytecie Singapurskim. Jest laureatem Medalu Maxwella przyznawanego przez Institute of Physics, Medalu Hughesa przyznawanego przez Royal Society oraz Nagrody Kartezjusza Unii Europejskiej.
      Uczony specjalizuje się w przetwarzaniu informacji w systemach kwantowo-mechanicznych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...