Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Astronomowie pracujący pod kierunkiem Paula Crowthera z University of Sheffield odkryli niezwykle masywne gwiazdy. Są wśród nich i takie, których ciężar znacznie przekracza 150-krotność masy Słońca. Gwiazdy są miliony razy jaśniejsze od naszej gwiazdy macierzystej.

Masywne obiekty znaleziono wewnątrz dwóch gromad - NGC 3603 i RMC 136a.

Mgławica NGC 3603 znajduje się w odległości 22 000 lat świetlnych od Ziemi, a gromada RMC 136a jest położona w Mgławicy Tarantuli w Wielkim Obłoku Magellana, 165 000 lat świetlnych od Ziemi.

Badania wykazały, że temperatura powierzchni wielu gwiazd w tych obszarach przekracza 39 700 sotpni Celsjusza, a więc są one ponad siedmiokrotnie cieplejsze niż Słońce. Są też dziesiątki razy większe i miliony razy jaśniejsze.

Absolutną rekordzistką jest R136a1 w gromadzie R136a. To najbardziej masywna znana nam gwiazda. Obecnie jest ona 265-krotnie cięższa od Słońca, a specjaliści wyliczyli, że po narodzinach jej waga przekraczała wagę naszej gwiazdy aż 320 razy. R136a1 jest też najjaśniejszą znaną gwiazdą - jej jasność jest niemal 10 milionów razy większa od jasności Słońca.

Astronomowie mówią, że jasność tej gwiazdy ma się tak do Słońca, jak jasność Słońca do Księżyca. O potędze R136a1 niech świadczy fakt, że emituje ona 50-krotnie więcej promieniowania niż cała Mgławica Oriona, najbliższy Ziemi obszar formowania się gwiazd.

R136a1 zdumiała specjalistów. Dotychczas sądzono, że gwiazdy mogą osiągnąć maksymalnie masę około 150 razy większą od masy Słońca. Teraz wiadomo, że górną granicą dla gwiazd jest prawdopodobnie około 300 mas Słońca.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Teraz wiadomo, że górną granicą dla gwiazd jest prawdopodobnie około 300 mas Słońca.

Acha, bo znaleźli taką co ma 265 mas słońca, a jak znajdą taką co ma 350 to co powiedzą, bezsens i zero pokory, wydaje im się, że wszystko wiedzą, a przecież strzelają w ciemno.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Obecnie jest ona 265-krotnie cięższa od Słońca, a specjaliści wyliczyli, że po narodzinach jej waga przekraczała wagę naszej gwiazdy aż 320 razy.

 

Teraz wiadomo, że górną granicą dla gwiazd jest prawdopodobnie około 300 mas Słońca.</p>

 

mnie tam ta sprzeczność bardziej martwi, widać słońce im też przygrzało - jak może być max około 300mas słońca, jeżeli już wiadomo, że była gwiazda o rozmiarze 320 mas... :/

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
gromada RMC 136a jest położona w Mgławicy Tarantuli w Wielkim Obłoku Magellana, 165 000 lat świetlnych od Ziemi.[/size] 

 

bsolutną rekordzistką jest R136a1 w gromadzie R136a. To najbardziej masywna znana nam gwiazda. Obecnie jest ona 265-krotnie cięższa od Słońca, a specjaliści wyliczyli, że po narodzinach jej waga przekraczała wagę naszej gwiazdy aż 320 razy. R136a1 jest też najjaśniejszą znaną gwiazdą - jej jasność jest niemal 10 milionów razy większa od jasności Słońca.[/size]

Tylko że już od 100 000 lat nie świeci.

 

 

Ps. gdzieś tam 30lat świetlnych od Ziemi, dzieci na zajęciach z astronomii jako ciekawostkę mają podawaną informację że istnieje taka planeta która po serii rozbłysków atomowych rozbłyskuje  światłem sodowym  o zmierzchu a przez całą dobę szumi w paśmie mikrofalowym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

mnie tam ta sprzeczność bardziej martwi, widać słońce im też przygrzało - jak może być max około 300mas słońca, jeżeli już wiadomo, że była gwiazda o rozmiarze 320 mas... :/

 

Tam jest "około" :D

 

Mnie dziwi coś innego. Skoro wczesniej sądzili, że max to około 150 mas, to przypuszczam, że sądzili tak z dwóch powodów:

1. najcięższe odkryte gwiazdy miały taką masę,

2. dokonali jakichś obliczeń, które pokazały, że cięższe być nie mogą

 

No i skoro teraz odkryli cięższą gwiazdę, to przecież oznacza, że ich obliczenia były do d... i niewykluczone, że odkryją jeszcze cięższą. Jak więc mogą mówić, że te około 300 to max?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To coś jak w archeologii, wiecznie coś szacują na podstawie najstarszych znanych śladów (ludzie znają to od… używają tamtego od… etc). Potem, jak się czyta newsy archeo, to regularnie są artykuły, że okazuje się, że ludzie to, tamto i siamto znali, robili i używali dużo wcześniej. Proponowałem nawet Pastuszce z Archeowieści, żeby założyć oddzielną kategorię „okazało się że wcześniej”.

Być może w astronomii też przydałaby się podobna kategoria.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców z Izraela, USA, Wielkiej Brytanii, Danii i Finlandii, znalazł dowody świadczące o tym, że gwiazda przetrwała spotkanie z supermasywną czarną dziurą. Do takich wniosków uczeni doszli, gdy niedawno zauważyli rozbłysk, który bardzo przypominał rozbłysk AT 2022dbl sprzed 700 dni. Ten wcześniejszy zaobserwowano dokładnie w tym samym miejscu, co późniejszy, a charakterystyki obu były niezwykle podobne. Badacze wysnuli więc wniosek, że oba rozbłyski spowodowało przejście tej samej gwiazdy w pobliżu czarnej dziury. A to oznacza, że gwiazda przetrwała pierwsze spotkanie.
      Gdy gwiazda znajdzie się zbyt blisko supermasywnej czarnej dziury, jest rozrywana przez siły pływowe. Połowa jej masy trafia do czarnej dziury, połowa jest odrzucana. Astronomowie niejednokrotnie obserwowali rozbłyski, świadczące o rozerwaniu gwiazdy przez czarną dziurę. Takie obserwacje pozwalają poznać właściwości czarnych dziur i ich dysku akrecyjnego. Centralną czarną dziurę Drogi Mlecznej możemy badać wykorzystując w tym celu ruch pobliskich gwiazd. Jednak w odniesieniu do innych galaktyk naukowcy muszą polegać na rzadkich wysokoenergetycznych wydarzeniach, pozwalających w ogóle stwierdzić obecność czarnej dziury.
      Szacuje się, że raz na 10 000 – 100 000 lat gwiazda może zbliżyć się do czarnej dziury tak blisko, że zostanie rozerwana. Wówczas połowa jej materiału opada na dziurę po spiralnej trajektorii. W bezpośrednim sąsiedztwie dziury opadająca materia osiąga niemal prędkość światła, rozgrzewa się i intensywnie promieniuje. Trwa to kilka tygodni lub miesięcy, dając astronomom okazję do badań.
      Jednak wiele takich rozbłysków stanowi zagadkę, gdyż ich jasność i temperatura są znacznie niższe, że przewidują teorie. Dlatego naukowcy szukają alternatywnych wyjaśnień tego fenomenu. Niedawno grupa naukowa pracująca pod kierunkiem Uniwersytetu w Tel Awiwie, zidentyfikowała w danych obserwacyjnych rozbłysk, który bardzo przypominał i miał miejsce w tym samym miejscu co rozbłysk AT 2022dbl sprzed 700 dni. Uczeni wysunęli więc hipotezę, że pierwszy rozbłysk był spowodowany częściowym zniszczeniem gwiazdy przez siły pływowe czarnej dziury, a drugi rozbłysk to dowód na ponowną interakcję tej samej gwiazdy i dziury.
      Pytanie brzmi, czy zaobserwujemy kolejny rozbłysk po mniej więcej dwóch latach, czyli na początku 2026 roku. Jeśli tak, to będzie oznaczało, że również drugi rozbłysk był wynikiem częściowego zniszczenia gwiazdy. Może więc i inne rozbłyski, których naturę specjaliści próbują wyjaśnić od dekady, nie są spowodowane przez całkowite zniszczenie gwiazdy, zastanawia się profesor Iair Arcavi z Tel Awiwu.
      Źródło: The Double Tidal Disruption Event AT 2022dbl Implies that at Least Some “Standard” Optical Tidal Disruption Events Are Partial Disruptions

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      TOI-6894 to gwiazda jakich wiele, nieduży czerwony karzeł o masie pięciokrotnie mniejszej od masy Słońca. Astronomowie nie spodziewają się, by wokół tak niewielkich gwiazd krążyły duże planety. Podczas ich formowania nie powinno być bowiem warunków do powstania wielkich planet. Jednak uczeni z University College London i University of Warwick dokonali zdumiewającego odkrycia, którego nie potrafią wytłumaczyć.
      Wokół TOI-6894 krąży bowiem gazowy olbrzym TOI-6894b o średnicy większej od średnicy Saturna. To odkrycie będzie przełomem w zrozumieniu procesu formowania się gazowych olbrzymów, stwierdzają odkrywcy. Planeta TOI-6894b, zauważona dzięki Very Large Telescope, jest gazowym olbrzymem o niewielkiej gęstości. Przy średnicy większej od Saturna jej masa jest o połowę mniejsza niż olbrzyma z Układu Słonecznego. A jej gwiazda macierzysta to najmniej masywna gwiazda przy której zauważono dużą planetę.
      To interesujące odkrycie. Nie rozumiemy, jak gwiazda o tak niskiej masie doprowadziła do powstania tak masywnej planety. To właśnie jeden z celów poszukiwań egzoplanet. Znajdując układy planetarne różne od Układu Słonecznego, możemy przetestować nasze modele i lepiej zrozumieć, jak powstał nas własny system planetarny, mówi doktor Vincent Van Eylen z UCL.
      Zgodnie z najszerzej akceptowaną teorią dotyczącą formowania się gazowych olbrzymów, powstają one z dysku akrecyjnego wokół gwiazdy. Znajdujący się tam materiał gromadzi się, tworząc jądro, a gdy staje się ono wystarczająco masywne, zaczyna przyciągać gazy, tworzące atmosferę gazowego olbrzyma. Początkowo proces ten jest powolny, jednak gdy masa atmosfery dorównuje już masie jądra, dochodzi do gwałtownego zasysania gazu z dysku akrecyjnego, a im większa masa, tym proces ten jest szybszy.
      Wedle tej teorii utworzenie się gazowych olbrzymów wokół gwiazd o niskiej masie jest trudniejsze, gdyż w ich dysku protoplanetarnym nie ma wystarczająco dużo materiału. Odkrycie TOI-6894b wskazuje, że taki model nie jest dokładny i potrzebne są alternatywne teorie. Być może formowanie się planety przebiegało stopniowo, jej jądro nie było nigdy tak masywne, by rozpoczął się proces gwałtownego zasysania gazu. Być może zaś planeta powstała w grawitacyjnie niestabilnym dysku, który rozpadł się na fragmenty i utworzył planetę. Naukowcy rozważyli oba te scenariusze i uznali, że żaden z nich nie wyjaśnia do końca powstania TOI-6894b. Kwestia więc pozostaje otwarta.
      Innym interesującym aspektem nowo odkrytej planety jest temperatura jej atmosfery. Jest ona bowiem niezwykle chłodna. Większość pozasłonecznych gazowych olbrzymów to gorące Jowisze, których atmosfera ma temperaturę 1000–2000 kelwinów. Tymczasem temperatura TOI-6894b to zaledwie 420 kelwinów.
      Źródło: A transiting giant planet in orbit around a 0.2-solar-mass host star, https://www.nature.com/articles/s41550-025-02552-4

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza ponad 50 000 gwiazd wykazała, że rozbłyski słoneczne mogą być setki razy potężniejsze, niż najsilniejszy rozbłysk kiedykolwiek zanotowany przez astronomów. Na łamach pisma Science badacze z Instytutu Badań Układu Słonecznego im Maxa Plancka poinformowali, że po przebadaniu 56 540 gwiazd doszli do wniosku, że każda z nich średnio co 100 lat doświadcza gigantycznego rozbłysku. Wyniki badań wskazują, że dotychczas potencjał gwiazd był niedoszacowany. Z danych zebranych przez Teleskop Keplera wynika bowiem, że gigantyczne rozbłyski mają miejsce 10-100 razy częściej niż sądzono.
      Już wcześniejszych badań wiadomo było, że na Słońcu może dochodzić do potężnych erupcji. Ich ślady znajdowano w prehistorycznych drzewach i lodzie z lodowców. Jednak na podstawie takich źródeł nie można było stwierdzić, jak często tego typu wydarzenia mają miejsce. Bezpośrednie pomiary ilości promieniowania docierającego ze Słońca na Ziemię potrafimy wykonywać dopiero od kilkudziesięciu lat.
      Istnieje jednak inny sposób na zdobycie danych na temat długoterminowego zachowania się Słońca. Współczesne teleskopy kosmiczne obserwują tysiące gwiazd i zbierają dane o zmianach ich jasności. W danych tych widać też potężne rozbłyski. Nie możemy obserwować Słońca przez tysiące lat. Możemy jednak badać zachowanie tysięcy gwiazd bardzo podobnych do Słońca w krótkim okresie czasu. To pozwala nam ocenić, jak często dochodzi do superrozbłysków, mówi współautor badań, profesor Sami Solanki.
      Naukowcy z Niemiec, Austrii, USA, Japonii, Finlandii i Francji przeanalizowali dane z 56 450 gwiazd dostarczone w latach 2009–2013 przez Teleskop Kosmiczny Keplera. W sumie Kepler dostarczył nam danych z 220 tysięcy lat aktywności słonecznej, wyjaśnia profesor Alexander Shapiro z Uniwersytetu w Grazu.
      Kluczowym elementem był dobór gwiazd jak najbardziej podobnych do naszej. Badacze wybrali więc te, których temperatura powierzchni i jasność były jak najbardziej zbliżone. W czasie badań zidentyfikowano 2889 superrozbłysków, które miały miejsce na 2527 gwiazdach spośród 56 450 wybranych. To oznacza, że każda z gwiazd generuje jeden superrozbłysk w ciągu stu lat. To było zaskakujące. Naukowcy nie spodziewali się, że potężne rozbłyski mają miejsce tak często. Dotychczas bowiem, na podstawie dowodów znalezionych na Ziemi, wydawało się, że dochodzi do nich znacznie rzadziej.
      Gdy cząstki z potężnego rozbłysku trafią do ziemskiej atmosfery, dochodzi do wytwarzania mierzalnych ilości pierwiastków promieniotwórczych, takich jak węgiel-14. Pierwiastki te trafiają do naturalnych archiwów, jak pierścienie drzew czy lód w lodowcach. Więc informacje o takim wydarzeniu na Słońcu można odczytać tysiące lat później na Ziemi. W ten sposób naukowcom udało się zidentyfikować 5 ekstremalnych wydarzeń tego typu i 3 kandydatów na rozbłyski. Doszło do nich w ciągu ostatnich 12 tysięcy lat. Z tego też powodu sądzono, że Słońce generuje superrozbłyski raz na około 1500 lat. I o ile wiadomo, ostatnie takie wydarzenie miało miejsce w 775 roku.
      Wyniki badań mogą niepokoić. O ile w roku 775 wynikiem skierowanego w stronę Ziemi rozbłysku mógł być niewielki wzrost zachorowań na nowotwory skóry, to współczesna cywilizacja techniczna bardzo boleśnie odczułaby skutki takiego wydarzenia.
      Już przed kilkunastu laty amerykańskie Narodowe Akademie Nauk opublikowały raport dotyczący ewentualnych skutków olbrzymiego koronalnego wyrzutu masy, który zostałby skierowany w stronę Ziemi. Takie wydarzenie spowodowałoby poważne perturbacje w polu magnetycznym planety, co z kolei wywołałoby przepływ dodatkowej energii w sieciach energetycznych. Nie są one przygotowane na tak gwałtowne zmiany.

      Omawiając ten raport, pisaliśmy, że mogłoby dojść do stopienia rdzeni w stacjach transformatorowych i pozbawienia prądu wszystkich odbiorców. Autorzy raportu stwierdzili, że gwałtowny koronalny wyrzut masy mógłby uszkodzić 300 kluczowych transformatorów w USA. W ciągu 90 sekund ponad 130 milionów osób zostałoby pozbawionych prądu. Mieszkańcy wieżowców natychmiast straciliby dostęp do wody pitnej. Reszta mogłaby z niej korzystać jeszcze przez około 12 godzin. Stanęłyby pociągi i metro. Z półek sklepowych błyskawiczne zniknęłaby żywność, gdyż ciężarówki mogłyby dostarczać zaopatrzenie dopóty, dopóki miałyby paliwo w zbiornikach. Pompy na stacjach benzynowych też działają na prąd. Po około 72 godzinach skończyłoby się paliwo w generatorach prądu. Wówczas stanęłyby szpitale.

      Najbardziej jednak przerażającą informacją jest ta, iż taki stan mógłby trwać całymi miesiącami lub latami. Uszkodzonych transformatorów nie można naprawić, trzeba je wymienić. To zajmuje zespołowi specjalistów co najmniej tydzień. Z kolei duże zakłady energetyczne mają na podorędziu nie więcej niż 2 grupy odpowiednio przeszkolonych ekspertów. Nawet jeśli część transformatorów zostałaby dość szybko naprawiona, nie wiadomo, czy w sieciach byłby prąd. Większość rurociągów pracuje bowiem dzięki energii elektrycznej. Bez sprawnego transportu w ciągu kilku tygodni również i elektrowniom węglowym skończyłyby się zapasy. Sytuacji nie zmieniłyby też elektrownie atomowe. Są one zaprojektowane tak, by automatycznie wyłączały się w przypadku poważnych awarii sieci energetycznych. Ich uruchomienie nie jest możliwe przed usunięciem awarii.

      O tym, że to nie tylko teoretyczne rozważania, świadczy chociażby fakt, że w marcu 1989 roku burza na Słońcu na 9 godzin pozbawiła prądu 6 milionów Kanadyjczyków. Z kolei najpotężniejszym tego typu zjawiskiem, jakie zachowało się w ludzkiej pamięci, było tzw. wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych. Przestały działać telegrafy, doszło do pożarów drewnianych budynków stacji telegraficznych, a w Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety. Igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne było widać nawet w Kolumbii. A pamiętać trzeba, że wydarzenie Carringtona było znacznie słabsze, niż superrozbłyski, o których tutaj mowa.

      Obecnie ucierpiałyby nie tylko sieci elektromagnetyczne, ale również łączność internetowa. Na szczególne niebezpieczeństwo narażone byłyby kable podmorskie, a konkretnie zainstalowane w nich wzmacniacze oraz ich uziemienia. Więc nawet gdy już uda się przywrócić zasilanie, problemem będzie funkcjonowanie globalnego internetu, bo naprawić trzeba będzie dziesiątki tysięcy kilometrów kabli.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
      W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
      Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
      Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
      Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
      Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
      Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
      Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
      Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...