Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'powietrze'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 17 results

  1. Coca-Cola Filipiny i WWF Filipiny odsłoniły w ubiegły czwartek (23 czerwca) pierwszy w kraju, a może i na świecie roślinny billboard. Jak głosi widoczne z daleka hasło, pochłania on zanieczyszczenia powietrza. Tablica znajduje się na Adriano Building w Makati. Billboard mierzy 18,3 na 18,3 m. Wykorzystano w nim sadzonki Carmona retusa (syn. Ehretia microphylla), rośliny należącej do ogórecznikowatych. Botanik Anthony Gao wylicza, że pojedyncza roślina może rocznie zaabsorbować średnio prawie 6 kg dwutlenku węgla. Billboard pomaga wyeliminować zanieczyszczenie powietrza w swoim najbliższym otoczeniu, ponieważ zgodnie z szacunkami, pochłonie ogółem ponad 21 ton CO2 z atmosfery - tłumaczy naukowiec. Reszta konstrukcji także jest ekologiczna. Projektanci posłużyli się m.in. 3600 puszkami i starymi butelkami po różnych produktach Coca-Coli. W każdej butelce znajduje się podłoże ogrodnicze, przygotowane z rozmaitych przemysłowych produktów ubocznych oraz nawozów organicznych. Specjalna formuła sprawia, że jest ono lekkie i stabilne. Butelki bezpiecznie utrzymują rośliny i pozwalają im się rozrastać na boki. Projektanci pomyśleli również o dodatkowych otworach, które zapewniają drenaż i stanowią zarazem miejsce przyczepu linii kroplującej. Zastosowanie mikroirygacji umożliwia oszczędzanie wody i nawozu. Szef filipińskiego oddziału Coca-Coli uważa, że przedsięwzięcie stanowi ucieleśnienie hasła Live Positively (żyj pozytywnie) i przykład pamiętania o zrównoważonym rozwoju w każdej dziedzinie życia.
  2. Otoczka powietrzna, dzięki której pająk topik (Argyroneta aquatica) spędza większość życia pod wodą, działa jak skrzela, ekstrahując z wody rozpuszczony tlen i rozpraszając dwutlenek węgla. Naukowcy doszli do tego, mierząc stężenie tlenu wewnątrz i poza siecią. Dysponując takim dzwonem nurkowym, topik może zostawać pod wodą przez całą zimę, a w innych porach roku, oszczędzając siły, przez ponad dobę, podczas gdy inne oddychające powietrzem atmosferycznym owady muszą się wynurzać co kilka minut. Wcześniej sądzono, że topiki wytrzymują pod wodą od 20 do 40 min, jednak najnowsze badania prof. Rogera Seymoura z Uniwersytetu w Adelajdzie i doktora Stefana Hetza z Uniwersytetu Humboldtów wykazały, że sprawy mają się zgoła inaczej. A. aquatica tworzy pomiędzy liśćmi podwodnych roślin kokon w kształcie otwartego od dołu globusa. Później pająk napełnia go pojedynczym bąblem powietrza. Wg Seymoura, przeważnie ma on wielkość paznokcia palca serdecznego. Naukowcy dodają jednak, że samice robią bańki pokaźniejszych rozmiarów, które można dalej powiększać w razie potrzeby, np. by pomieścić ofiarę lub jaja. Dodatkowo pająki powiększają bąble, gdy poziom tlenu w wodzie spada. Bańka powietrza w rzeczywistości wystaje pomiędzy oczkami sieci, powstaje więc rodzaj interfejsu powietrze-woda. Podczas eksperymentów naukowcy posłużyli się tlenoczułym światłowodem. Dzięki temu mogli ocenić objętość gazu w dzwonie nurkowym oraz poziom wymiany gazowej między wodą a bańką. Dodatkowo zmierzono zużycie tlenu przez owada. Odkryliśmy, że w porównaniu do tego, co było na początku, z wody może pochodzić aż 8-krotnie więcej tlenu. Bańka działa więc jak bardzo skuteczne skrzela fizyczne, czyli dyfuzyjne. Jako że topik prowadzi raczej osiadły tryb życia, bąbel odpowiada jego potrzebom oddechowym nawet w rozgrzanej stojącej wodzie. Raz na dobę topik musi donieść świeżego powietrza, ponieważ bańka kurczy się wskutek dyfundowania azotu do otaczającej wody. Transport odbywa się na odwłoku i tylnych nogach. Dzięki temu, że pająk tak rzadko się wynurza i siedzi spokojnie, łatwiej mu polować, poza tym sam unika stania się czyjąś ofiarą. Seymour uważa, że być może ze względów kamuflujących topik przygotowuje swoją sieć nocą.
  3. Herself to rzeźba w formie sukienki, którą należy uznać za pierwszy na świecie element garderoby oczyszczający powietrze. Jak by nie patrzeć, choć powstała z betonowej mieszanki w spreju, prototypowa suknia jest bardzo piękna. Stanowi efekt kilkuletniej współpracy Uniwersytetów w Sheffield i Ulsterze, a także Londyńskiego College'u Mody. Jak napisano na witrynie projektu Catalytic Clothing, w swoim pobliżu Herself absorbuje zanieczyszczenia z powietrza. Na razie nie wiadomo, jak suknia działa. Amy Dusto z serwisu Discovery News podejrzewa jednak, że na podobnej zasadzie jak przezroczysty beton włoskiej firmy Italcementi, który stanowi połączenie cementu, żywic, żwiru i piasku. Materiał ten zadebiutował we włoskim pawilonie na zeszłorocznym Expo w Szanghaju. Przyjazny środowisku budynek, w którym go użyto, przypominał olbrzymi lampion, widać było bowiem prześwitujące przez niego światło. Niedawno wynalazek pojawił się też w Europie. W jego przypadku światło stanowi katalizator, przyspieszający zachodzenie reakcji między tlenkiem tytanu(IV) a zanieczyszczeniami powietrza. Zgodnie z doniesieniami, w ten sposób udaje się obniżyć stężenie tlenku węgla i tlenku azotu(IV) aż o 65%. Pomysłodawcy i wykonawcy sukni mają nadzieję, że w przyszłości 40 kobiet ubranych w Herself (lub ludzi w podobnie działającej odzieży) w minutę oczyści 2 metry sześcienne powietrza. Stanie się tak pod warunkiem, że skupią się na metrze kwadratowym podłoża. Mało wykonalne, chyba że weźmie się pod uwagę rekordy liczby osób, które zmieszczą się naraz np. w małym fiacie. Pozostaje mieć nadzieję, że naukowcy szybko ulepszą swoją technologię... Pod wskazanym adresem można obejrzeć zdjęcia sukni oraz zapisane na tablicy opinie o niej, wyrażane przez zwiedzających wystawę.
  4. Ostre zimy, które ostatnio coraz częściej nawiedzają Europę są przez niektórych uważane za dowód, iż globalne ocieplenie nie ma miejsca. Niemieccy naukowcy wyjaśniają jednak, że są one właśnie przejawem ocieplającego się klimatu. Rosnące temperatury spowodowały, że w ciągu ostatnich 30 lat z Arktyki zniknęło około 20% lodu pokrywającego ocean. Promienie słoneczne nie są już więc odbijane przez śnieg, a pochłaniane przez ciemne wody, które ulegają ogrzaniu. "Niech wody te mają temperaturę 0 stopni Celsjusza. Są więc w zimie znacznie cieplejsze niż powietrze, które się nad nimi znajduje. Mamy zatem olbrzymie źródło ciepła, ogrzewające od spodu atmosferę. Zjawisko takie nie zachodziło, gdy woda była pokryta lodem" - wyjaśnia Stefan Rahmstorf z Poczdamskiego Instytutu Zmian Klimatycznych. Jak wykazały ostatnie badania, zjawisko takie prowadzi do pojawienia się dużej różnicy ciśnień, które wypychają polarne powietrze w kierunku Europy. "Gdy patrzę przez okno widzę 30 centymetrów śniegu, a temperatura sięga -14 stopni. W tym samym czasie na Grenlandii panują dodatnie temperatury" - mówi Rahmstorf.
  5. Profesor Noam Sobel oraz współpracujący z nim Anton Plotkin, Aharon Weissbrod i Lee Sela z Instytutu Weizmanna opracowali technologię, która pozwala sterować urządzeniami za pomocą... powietrza wydmuchiwanego i wciąganego nosem. Izraelski system wykrywa zmiany ciśnienia w nozdrzach i przekłada te dane na sygnały elektryczne. Głównym celem naukowców jest umożliwienie osobom z niewładnymi kończynami sterowania wózkiem czy komunikowania się z innymi. Technologia została przetestowana zarówno przez osoby zdrowe, jak i całkowicie sparaliżowane. Okazało się, że pozwala ona pokonać wózkiem inwalidzkim skomplikowany tor przeszkód. Umożliwia też na korzystanie z gier komputerowych z niemal taką samą prędkością jak za pomocą klawiatury czy myszy. Wdychanie i wydychanie powietrza nosem to bardzo precyzyjny i łatwy do kontrolowania mechanizm. Odbywa się on dzięki pomocy podniebienie miękkiego. Ono jest z kolei sterowana za pomocą nerwów połączonych bezpośrednio z mózgiem. To skłoniło Sobela i jego zespół do stwierdzenia, że nawet u osób najciężej sparaliżowanych kontrola podniebienia miękkiego została zachowana. Badania przeprowadzone za pomocą funkcjonalnego rezonansu magnetycznego pokazały, że uczeni mają rację, a w kontroli podniebienia miękkiego bierze udział kilka obszarów mózgu. Zauważono też, że obszary te w dużej mierze pokrywają się z obszarami odpowiedzialnymi za naukę mówienia, co sugerowało, iż kontrola przepływu powietrza nosem jest intuicyjna. Izraelczycy stworzyli więc urządzenie z czujnikiem montowanym przy ujściu nozdrzy. Zbudowano też odpowiednią wersję dla osób korzystających z respiratora. Testy na zdrowych wypadły pomyślnie, urządzenie wypróbowano więc na chorych. Jedna z pacjentek, która przeszła udar przed 7 miesiącami, po kilku dniach nauki napisała list do swojej rodziny. Z kolei pacjent, który jest sparaliżowany od 18 lat stwierdził, że nowe urządzenie jest znacznie łatwiejsze w użyciu niż systemy wykorzystujące ruchy powiek. Chorzy byli w stanie pisać listy i grać w gry komputerowe. Nauczenie się sterowania wózkiem inwalidzkim zajmowało im 15 minut. Dwa wciągnięcia powietrza informują urządzenie, że wózek ma jechać do przodu. Dwa wydmuchnięcia powodują jazdę w tył. Wydmuchnięcie i wciągnięcie to skręt w lewo, wciągnięcie i wydmuchnięcie - w prawo. Testy pokazały, że osoba sparaliżowana od szyi w dół radzi sobie z wózkiem równie dobrze, jak osoba zdrowa. Jako że przepływ powietrza jesteśmy w stanie precyzyjnie kontrolować, powietrze wciągamy i wydmuchujemy, podmuch może być słaby i mocny, długi i krótki, programiści będą w stanie stworzyć skomplikowany "język" umożliwiający precyzyjne sterowanie różnymi przedmiotami. Izraelska technologia ma sporo zalet. Jest tania, prosta i łatwo się z niej korzysta. Przyda się ona nie tylko niepełnosprawnym. Może posłużyć przecież jako "trzecia ręka" pilotom czy chirurgom.
  6. Naukowcy z University of Bath pracują nad produkcją paliwa samochodowego z... powietrza. W ramach wartego 1,4 miliona funtów projektu próbują pozyskiwać z powietrza dwutlenek węgla i zamieniać go w paliwo. W badaniach biorą też udział uczeni z University of Briston i University of the West of England. Specjaliści skupiają się na stworzeniu porowatego materiału, który wychwytywałby CO2 i zamieniał go w paliwo lub plastiki przy pomocy energii słonecznej. Obecnie wykorzystuje się osobne technologie do wychwytywania i wykorzystywania CO2, co czyni cały proces bardzo nieefektywnym. Połączenie tych technologii zwiększa efektywność i powoduje, że minimalizujemy ilość energii potrzebną do redukcji dwutlenku węgla w atmosferze - mówi Frank Marken, chemik z Bath.
  7. Gdy czujemy na szyi czyjś oddech, łatwiej nam zrozumieć, co mówi. Badacze z Kanady uważają, że odkrycie to pomoże skonstruować lepsze aparaty dla osób niedosłyszących lub pracujących w dużym hałasie (Nature). Wiedząc, że wzrok wpływa na wrażenia słuchowe (jeśli np. słyszymy "ba", ale widzimy osobę mówiącą "ga", zinterpretujemy dźwięk jako "da"), Bryan Gick z Uniwersytetu Kolumbii Brytyjskiej zastanawiał się, czy podobnie będzie w przypadku stymulacji dotykowej. Wcześniejsze studia sugerowały, że tak, ale wyłącznie w pewnych okolicznościach, np. gdy podmiot jest świadomy wykonywanego zadania lub przeszedł trening mapowania "międzyzmysłowego". Doświadczenie Kanadyjczyków wykazało, że dzieje się tak naturalnie, bez przeszkolenia. W odróżnieniu od artykulacji "ba" i "da", wymawianiu sylab "pa" i "ta" towarzyszy lekki podmuch wydobywającego się z ust powietrza. Wiele wskazuje na to, że mózg może się nauczyć wykorzystywać takie dmuchnięcia do modyfikowania percepcji dźwięków. W ramach eksperymentu 66 ochotników słuchało męskiego głosu, który wymawiał 4 sylaby. Szum tła utrudniał ich odróżnienie. Podczas słuchania części z nich na dłoń bądź szyję badanych kierowano leciutki strumień powietrza. Był tak delikatny, że wiele osób nie miało nawet pojęcia o jego istnieniu, ale zwiększała się ich skuteczność w wykrywaniu sylab "pa" i "ta". Jeśli jednak dmuchnięcia towarzyszyły "ba" i "da" częściej mylono je z "pa" oraz "ta".
  8. Naukowcy z Wolnego Uniwersytetu w Brukseli opracowali metodę, która pozwala na ukierunkowanie procesu różnicowania embrionalnych komórek macierzystych w sposób niezależny od chemicznych czynników wzrostowych uznawanych za niezbędne dla zajścia tego zjawiska. Jak wykazali, w drogach oddechowych różnicowanie może zachodzić spontanicznie w reakcji na bodźce fizyczne charakterystyczne dla tej lokalizacji. Swój eksperyment badacze z belgijskiej uczelni rozpoczęli od standardowej hodowli embrionalnych komórek macierzystych (ang. embryonic stem cells - ESC). W tym celu umieszczono je na porowatej membranie, pod którą znajdowały się tzw. komórki karmiące (ang. feeder cells), których zadaniem było dostarczanie ESC substancji niezbędnych do ich wzrostu (nie wywoływały one jednak różnicowania w komórki dojrzałe). Powierzchnię membrany zalano z kolei specjalną pożywką zawierającą dodatkowe czynniki stymulujące przemianę w dojrzałe komórki dróg oddechowych. Tak przygotowane komórki hodowano przez cztery dni, podczas których co 24 godziny dodawano świeżej pożywki. Po zakończeniu pierwszego etapu eksperymentu pożywkę znad membrany usunięto, zaś ESC wystawiono na działanie powietrza przy zachowaniu dopływu płynu i czynników wytwarzanych przez komórki karmiące. Miało to symulować środowisko dróg oddechowych, w którym dojrzewające komórki z jednej strony mają kontakt z powietrzem, a z drugiej - z krwią. Po 25 dniach ekspozycji na powietrze w naczyniu stwierdzono obecność komórek wyraźnie różnicujących się w kierunku elementów nabłonka dróg oddechowych. Podobnego zjawiska nie zaobserwowano w naczyniach kontrolnych, w których nad membraną zamiast powietrza znajdowała się płynna pożywka bez składników stymulujących różnicowanie. Oznacza to, że czysto fizyczny czynnik, jakim jest kontakt z powietrzem, może zastąpić mieszankę chemicznych stymulatorów różnicowania i uruchomić program przekształcania się ESC w komórki dojrzałe. Przeprowadzone doświadczenie jest nie tylko jedną z pierwszych udanych prób stymulacji komórek macierzystych do różnicowania za pomocą czynników fizycznych. Przede wszystkim dostarcza ono ważnych informacji na temat procesów decydujących o powstaniu nabłonka dróg oddechowych. Wiedza ta może się więc przydać m.in. podczas leczenia wielu chorób układu oddechowego.
  9. Na University of Michigan skonstruowano procesor, który do wykonywania obliczeń używa nie elektronów, ale... powietrza. Poszczególne wartości logiczne reprezentowane są przez zasysanie powietrza do tuby (0) i jego wypuszczanie (1). Procesor jest więc złożony z szeregu zaworów, tub i kanałów, którymi wędruje powietrze. Pneumatyczne zawory wykorzystują elastyczne membrany i umieszczone pod nimi komory. Gdy do komory trafia powietrze, membrana wypychana jest w górę, blokując przepływ powietrznego sygnału w bramce. Gdy powietrze zostaje wyssane, membrana się obniża i sygnał może przejść. Dzięki całemu zestawowi kanałów powietrznych kontrolowanych za pomocą zaworów Mark Burns i Minsoung Rhee stworzyli bramki logiczne, rejestry przesuwne i przerzutniki. Dzięki ich połączeniu powstał powietrzny 8-bitowy procesor. Wbrew pozorom wykorzystujący powietrze procesor to nie tylko ciekawostka. Układ może pomóc w udoskonaleniu systemów typu "laboratorium w układzie scalonym", które są coraz szerzej wykorzystywane w medycynie, chemii czy biologii. Systemy takie wykorzystują najczęściej przepływ cieczy i gazów w skali mikro. Nie są wyposażone w żadną elektronikę, a więc połączenie ich ze współczesnymi układami liczącymi nie jest łatwe i tanie. Tymczasem powietrzny procesor jest zbudowany podobnie, tak jak i one wykorzystuje serię zaworów, ale czyni to w celu dokonywania obliczeń. Jego połączenie z urządzeniami "laboratorium w układzie scalonym" powinno być więc stosunkowo łatwe.
  10. Chyba nikogo nie trzeba przekonywać, że wnętrze tunelu drogowego jest zwykle miejscem o wyjątkowo wysokim zagęszczeniu spalin. Problem ten dostrzegają także naukowcy, którzy regularnie badają poziom zanieczyszczeń. Niestety, jak wynika z prezentowanych przez nich wyników badań, pomimo pojawiania się na rynku coraz mniej paliwożernych samochodów, ilość zanieczyszczeń w tunelach wzrasta. Na łamach czasopisma Atmospheric Environment opublikowano właśnie wyniki najnowszych badań, prowadzonych przez zespół prof. Lidii Morawskiej - Polki pracującej obecnie dla Queensland University of Technology. Wynika z nich, że występujące w tunelach drogowych stężenie zanieczyszczeń w formie tzw. cząstek ultradrobnych znacząco przekracza wartości uznawane za bezpieczne dla człowieka. Zebrane informacje są efektem testów wykonywanych podczas ponad trzystu przejazdów przez czterokilometrowy tunel na australijskiej autostradzie M5. Jak się okazuje, pomiary wykonywane w czasie szczytu komunikacyjnego wskazywały nieraz na tysiąckrotny wzrost zagęszczenia cząstek ultradrobnych w stosunku do ich stężenia na otwartej przestrzeni w obrębie miasta. Najbardziej niepokojący fakt zaobserwowany przez prof. Morawską to stopniowy wzrost stężenia cząstek ultradrobnych w powietrzu. W porównaniu do podobnych badań prowadzonych wcześniej, [ostatnie] pomiary należały do najwyższych rejestrowanych, wspomina badaczka. Jak podkreśla, tak wysoka koncentracja zanieczyszczeń może powodować szereg zaburzeń, od drobnych problemów z oddychaniem aż po bezpośrednie wywołanie ataku serca. Jak nietrudno przewidzieć, osobami najbardziej zagrożonymi ekspozycją na szkodliwe cząstki są pasażerowie aut starych i kabrioletów oraz motocykli. Na szczęście wiele nowych samochodów posiada klimatyzację, która filtruje powietrze wpadające do samochodu, a w razie potrzeby umożliwia także zamknięcie obiegu powietrza i niemal kompletne odizolowanie go od wymiany powietrza z otoczeniem. Zdaniem prof. Morawskiej wyniki prowadzonych przez nią badań nie mogą zostać zignorowane. To badanie pokazuje, dlaczego rządzący powinni przemyśleć, w jaki sposób planują radzić sobie z zanieczyszczeniem powietrza wewnątrz tuneli oraz z usuwaniem cząstek ultradrobnych w środowisku.
  11. Podtrzymywanie normalnej wilgotności otoczenia stanowi klucz do zdrowego i atrakcyjnego wyglądu paznokci – przekonują badacze z Uniwersytetu w Manchesterze. Specjaliści zajmujący się naturalnymi materiałami i biomechaniką sprawdzili, jak paznokcie radzą sobie ze stresem w różnych warunkach środowiskowych. Doktorzy Stephen Eichhorn i Roland Ennos prowadzili testy na ścinkach paznokci, pozyskanych od młodych i zdrowych dorosłych. Próbki umieszczono w metalowych uchwytach i poddano kilku testom przy różnych wartościach wilgotności powietrza. Okazało się, że paznokcie są najbardziej odporne na uszkodzenia, w tym na rozdzieranie i obcinanie, przy względnej wilgotności powietrza wynoszącej 55%. Przy niższej stają się bardziej kruche, a przy wyższej zyskują na elastyczności, lecz jednocześnie dają się łatwiej ucinać. Brytyjczycy zauważyli też, że paznokcie odzyskują swoje właściwości mechaniczne, gdy najpierw zostają rozciągnięte, a potem swobodnie puszczone. Dzieje się tak prawdopodobnie wskutek zmian zachodzących w obecności wilgoci w materiale wiążącym w całość włókniste elementy paznokcia. Kontrolowane testy wyginania ujawniły, że przy 55-proc. wilgotności względnej przechodzi on drastyczne zmiany właściwości, stając się bardziej elastyczny przy wyższych wartościach. To dlatego po kąpieli pedikiur i manikiur stają się dużo łatwiejsze. Jak twierdzi Ennos, znajomość lokalnych warunków środowiskowych pozwala lepiej chronić paznokcie, pod warunkiem, że wykorzysta się dane zebrane przez naukowców z Manchesteru. Stwierdziliśmy, że paznokcie dobrze się sprawują w dużym zakresie wilgotności, ale najlepiej ich całkowicie nie wysuszać i zbytnio nie moczyć – uzupełnia wypowiedź kolegi Eichhorn.
  12. Od dawna wiadomo, że zanieczyszczenie powietrza może szkodzić embrionom. Amerykańscy naukowcy potwierdzili także wpływ smogu na mózg nienarodzonego dziecka oraz istnienie związku pomiędzy zanieczyszczonym powietrzem a niskim ilorazem inteligencji w dzieciństwie. Podczas badań obserwowano 249 dzieci, których matki mieszkały w Nowym Jorku. Kobiety w ostatnich miesiącach ciąży nosiły przez 48 godzin mierniki czystości powietrza. Matki 56 procent badanych dzieci mieszkały przy bardzo ruchliwych ulicach bądź np. w pobliżu dworców autobusowych. Do czynników wpływających na niski iloraz inteligencji u dzieci należy również doliczyć bierne palenie, kontakt ze smogiem po narodzinach oraz zainteresowanie nauką wśród pozostałych domowników. Kolejnym krokiem eksperymentu było poddanie dzieci w wieku pięciu lat testowi badającemu ich poziom inteligencji. Okazało się, że te, które przed urodzeniem przebywały w bardziej zanieczyszczonych miejscach, otrzymywały od czterech do pięciu punktów mniej niż pozostałe dzieci. Federica Perera, doktor prowadząca badania, twierdzi, że różnice te da się później zauważyć w szkolnych osiągnięciach maluchów.
  13. Mangan obecny w środowisku człowieka może być korzystny dla zdrowia, ale tylko wtedy, gdy jest rozpylony w powietrzu - uważają naukowcy z Wake Forest University. Co ciekawe, ten sam pierwiastek obecny w wodzie może być z kolei szkodliwy. Ludzie potrzebują manganu w śladowych ilościach, lecz jeśli przyjmie się go zbyt wiele, mangan może być szkodliwy, podsumowuje główny autor studium, dr John Spangler. Prowadzone przez niego badania były pierwszą na świecie próbą określenia wpływu ekspozycji na mangan zawarty w środowisku na organizm człowieka. Obszarem badań prowadzonych przez dr. Spanglera była Karolina Północna. Poziom ekspozycji ludności na mangan, obliczony m.in. dzięki analizie danych geologicznych i epidemiologicznych oraz studiowaniu spisu powszechnego, ustalono indywidualnie dla każdego ze stu hrabstw tego stanu. Jak się okazało, dziesięciokrotny wzrost stężenia manganu w powietrzu wiązał się ze spadkiem liczby zgonów z powodu nowotworów o 8,1 przypadków na 100 tys. mieszkańców stanu. Zwiększenie zawartości tego pierwiastka w wodzie miało jednak przeciwne działanie i powodowało zwiększenie liczby śmiertelnych ofiar nowotworów o 12,1 na 100 tys. mieszkańców. Wpływ manganu zaobserwowano w przypadku kilku najczęściej występujących nowotworów, takich jak rak piersi, płuca czy jelita grubego. Co ciekawe jednak, wszystko wskazuje na to, że ekspozycja na ten pierwiastek nie wpływa na umieralność z powodu raka prostaty. O wynikach studium poinformowało czasopismo Biological Trace Element Research.
  14. W powietrzu unoszącym się nad Madrytem i Barceloną wykryto ślady kokainy i substancji "spokrewnionej" z LSD. Do tej pory naukowcy uważali, że metropolie okrywa zwykły smog, w atmosferze znaleziono jednak kilka rodzajów narkotyków, głównie wspominaną kokainę. W oświadczeniu opublikowanym na witrynie internetowej Consejo Superior de Investigaciones Científicas (CSIC), czyli rządowego komitetu badań naukowych, poinformowano, że poza kokainą, stacje kontrolujące jakość powietrza nad miastami wytropiły amfetaminę, opiaty, THC i kwas lizergowy (LSD jest dietyloamidem kwasu D-lizergowego). Odkrycie środków odurzających w powietrzu to raczej ciekawostka, a nie powód do zmartwień. Nawet gdybyśmy żyli tysiąc lat, nie wchłonęlibyśmy odpowiednika dawki kokainy – twierdzi Miren Lopez de Alda. Co więcej, naukowcy uważają, że wyniki nie są reprezentatywne ani dla Madrytu, ani dla Barcelony. W stolicy Hiszpanii próbki pobierano bowiem w pobliżu zrujnowanego budynku, gdzie często pojawiają się dilerzy i narkomani. Poza tym zarówno w Madrycie, jak i w głównym mieście Katalonii badania prowadzono niedaleko uniwersytetów. Studium ujawniło też wyższe stężenia narkotyków w weekendy, co sugeruje, że podczas wolnych dni zażywano ich więcej. We wszystkich próbkach stwierdzono obecność kokainy i THC. Stężenie kokainy wynosiło od 29 do 850 pikogramów na metr sześcienny powietrza, a tetrahydrokannabinolu, benzoiloekgoniny (metabolitu kokainy) i 6ACM (6-acetylomorfiny, pochodnej heroiny) 23-33 pikogramy/m3. Tylko w jednym miejscu w Madrycie (w ruinach odwiedzanych przez uzależnionych) poziom THC sięgał 143 pikogramów. Amfetamina występowała w ilościach mniejszych niż 5 pikogramów na metr sześcienny. Badania przeprowadzano metodą chromatografii cieczowej i spektrometrii masowej.
  15. Istnieją setki gatunków owadów zdolnych do życia pod wodą. Naukowcy wiedzą o tym od dawna, lecz dotychczas nie wiadomo było, jaki czynnik umożliwia im pozostawanie przez długi czas pod powierzchnią bez potrzeby wynurzania się. Badanie wykonane przez naukowca z Uniwersytetu Alberta rzuca nowe światło na ten fenomen. Studium, prowadzone przez pracującego na kanadyjskiej uczelni prof. Morrisa Flynna, doprowadziło do odkrycia nieznanych dotąd właściwości woskowatej powłoki ciała niektórych insektów. U części z nich warstwa ta, silnie ograniczająca przenikanie wody, jest wytwarzana w taki sposób, że po uwolnieniu z organizmu spoczywa na powierzchni warstwy włosków. Powstaje w ten sposób pęcherz powietrza, zwany przez entomologów (specjalistów zajmujących się badaniem owadów) plastronem, pozwalający zwierzęciu na przebywanie pod wodą przez bardzo długi czas. Właściwości plastronu pozwalają nie tylko na przechowywanie zapasu powietrza. Jego unikalna struktura ułatwia dodatkowo wymianę gazową między wnętrzem pęcherza i otaczającą wodą, polegającą na pobieraniu rozpuszczonego w wodzie tlenu i wydzielaniu dwutlenku węgla do otoczenia. Niezwykła struktura przypomina więc nieco płuco, w którym rolę półprzepuszczalnej błony pełnią komórki nabłonka. Co ciekawe, insekt jest w stanie przeżyć wyłącznie w wodzie o określonej głębokości. Jak tłumaczy Flynn, im ciaśniej ułożone są włoski, tym większy nacisk może wytrzymać pęcherzyk zanim się zapadnie. Nie oznacza to jednak, że w płytkiej wodzie wymiana gazowa zachodzi optymalnie. Okazuje się bowiem, że przy niższym nacisku z zewnątrz bąbel gazu nadmiernie rośnie i jego kształt przybliża się do kształtu kuli, co utrudnia przepływ gazów pomiędzy ciałem insekta i otoczeniem. Trzeba przyznać, że zdolności owadów budzą podziw. Wiele z nich jest zdolnych do zanurkowania nawet na głębokość trzydziestu metrów i pozostanie tam przez długi czas, często nawet przez znaczną część życia. Dla porównania, większość ludzi jest w stanie zejść samodzielnie zaledwie kilka metrów pod powierzchnię.
  16. Naukowiec i projektantka mody z USA skorzystali ze zdobyczy nanotechnologii i stworzyli ubrania, które niszczą wirusy, m.in. grypy, oraz oczyszczają powietrze. Eliminowane są więc zarówno czynniki biologiczne, jak i chemiczne. Dr Juan Hinestroza, inżynier chemik z Cornell University, współpracował z designerką Olivią Ong, która chciała uczynić z nanocząsteczek element swojej najnowszej linii ubrań. Projektantka twierdzi, że zainspirował ją smog unoszący się nad Los Angeles. Jest dużo zanieczyszczeń, dlatego pomyślałam, że można by połączyć technologię i ubrania, żeby im jakoś zapobiegać. Hinestroza zaprojektował osobisty układ oczyszczania powietrza. Zaprzągł do pracy cząsteczki metali, które są znacznie mniejsze od przekroju ludzkiego włosa. Przylegają one do materiału i potrafią zabijać konkretne wirusy i bakterie. Niektóre ubrania pokryto dodatkowo nanocząsteczkami odbijającymi fale świetlne o określonej długości, dzięki czemu uzyskiwany jest kolor. Teraz chemik pracuje nad ulepszeniem swojego wynalazku. Chciałby m.in., by nanocząstki mogły się przemieszczać po powierzchni tkaniny. Wtedy udałoby się uzyskać wrażenie zmieniającej się barwy. W takiej sytuacji mógłbyś pójść do biura w niebieskiej koszuli, a gdybyś nie chciał wracać do domu przed wieczornym przyjęciem, wszedłbyś po prostu w obszar oddziaływania pola elektrycznego [które poprzesuwałoby cząsteczki] i ciuch stałby się czarny. Na razie sprzedaż nowoczesnego materiału jest kwestią odległej przyszłości, ponieważ jego skrawek (0,84 m2) kosztuje 10 tysięcy dolarów.
  17. Zespół specjalistów do spraw żywienia uważa, że powietrze może być składnikiem, który pozwoli obniżyć zawartość kalorii w przekąskach. Badacze podzielili nieodchudzających się wolontariuszy na 2 grupy. Przez 4 popołudnia uczestnicy eksperymentu mogli zjadać tak dużo chrupek serowych, ile tylko chcieli. Połowa jadła zbite chipsy Cheetos, a pozostali przekąski napompowane w większym stopniu powietrzem. Chociaż osoby raczące się dmuchanymi chrupkami zjadały pokarm o większej objętości, w rzeczywistości dostarczały swojemu organizmowi o ok. 21% kalorii mniej (Appetite). Możesz oszukać swoje zmysły, że zjadłeś więcej, zwiększając objętość pokarmu. Wybierając przekąski, które zawierają więcej powietrza, zwiększysz ich objętość, ale zmniejszysz kaloryczność — przekonuje Barbara Rolls z University of Pensylvania. Powyższe spostrzeżenie nie dotyczy rzecz jasna tylko chrupek, ale także innych produktów, np. płatków śniadaniowych. Ktoś dbający o linię postąpi lepiej, decydując się na lekkie, dmuchane płatki, a nie na gęste, ciasno upakowane musli. Jak twierdzi pani doktor, niewłaściwie oceniając ilość wsypanej do miseczki granoli, łatwo można pochłonąć trzy razy tyle kalorii, co w przypadku płatków innego rodzaju. Rolls jest autorką najnowszych publikacji na temat wolumetryki (od ang. volume, czyli objętość) — podejścia do kontroli wagi, skupiającego się na gęstości energetycznej czy, inaczej mówiąc, naładowaniu kaloriami porcji różnych pokarmów. Gęstość energetyczną można obliczyć, dzieląc liczbę kalorii przez wielkość porcji podaną w gramach. Mniejsza liczba oznacza niższą gęstość energetyczną. W wyliczeniach tych nie wzięto jednak pod uwagę potencjalnych efektów napowietrzania. Mimo że nadmuchane przekąski są "rzadsze", dodatkowe powietrze nie zwiększa właściwie wagi. Czemu ludzie spożywający rozrzedzone powietrzem pokarmy zjadają mniej kalorii? Paul Rozin, psycholog z University of Pensylvania, podaje dwa możliwe wyjaśnienia. Jedno jest takie, że na uczucie sytości w żołądku w większym stopniu wpływa objętość i [przy dmuchanych pokarmach — przyp. red.] szybciej daje on ciału znak, że już wystarczy. Inna możliwość jest taka, że wyobrażamy sobie, iż zjedliśmy więcej, ponieważ porcje są większe.
×
×
  • Create New...