Znajdź zawartość
Wyświetlanie wyników dla tagów 'pole elektryczne' .
Znaleziono 7 wyników
-
Grafenowi można nadać właściwości piezoelektryczne
KopalniaWiedzy.pl dodał temat w dziale Technologia
Grafen ma wiele niezwykłych właściwości, jednak nie jest materiałem piezoelektrycznym. Piezoelektryczność to właściwość niektórych materiałów, polegająca na tym, że przy zginaniu, ściskaniu i skręcaniu materiały te produkują ładunki elektryczne. Występuje też zależność odwrotna - pole elektryczne wywołuje odkształcenie materiału piezoelektrycznego, dając nad nim duża kontrolę. W ACS Nano ukazał się artykuł, w którym dwóch inżynierów ze Stanford University opisuje, w jaki sposób nadali grafenowi właściwości piezoelektryczne. Fizyczne deformacje, jakie możemy tworzyć, są wprost proporcjonalne do przyłożonego pola elektrycznego, co daje nam niedostępną wcześniej możliwość kontrolowania elektroniki w nanoskali - stwierdził Evan Reed, szef Materials Computation and Theory Group i główny autor badań. To pozwala mieć nadzieję, na zrealizowanie koncepcji ‚straintroniki’, zwanej tak ze względu na sposób, w jaki pole elektryczne w sposób przewidywalny zmienia kształt sieci krystalicznej węgla - dodał uczony. Mitchell Ong, autor artykułu w ACS Nano, uważa, że „piezoelektryczny grafen może może zapewnić niedostępny dotychczas stopień elektrycznej, mechanicznej i optycznej kontorli nad różnymi urządzeniami, od ekranów dotykowych po nanotranzystory“. Za pomocą symulacji przeprowadzanych na superkomputerach, inżynierowie sprawdzali skutki domieszkowania grafenu po jednej lub obu stronach sieci krystalicznej. Modelowano domieszkowanie litem, wodorem, potasem i fluorem oraz ich kombinacjami. Wyniki zaskoczyły naukowców. Sądziliśmy, że pojawi się efekt piezoelektryczny, ale będzie on słaby. Tymczasem jest on podobny do występującego w tradycyjnych materiałach - mówi Reed.-
- grafen
- piezoelektryczność
-
(i 6 więcej)
Oznaczone tagami:
-
Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych. Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów). Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie. Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
-
- arsenek galu
- impuls
-
(i 4 więcej)
Oznaczone tagami:
-
Jedną z największych wad współczesnych baterii jest długi czas ich ładowania. To z kolei uniemożliwia upowszechnienie się np. elektrycznych samochodów. Niewykluczone jednak, że uczeni z Mississippi State University właśnie znaleźli sposób na przezwyciężenie tego problemu. Podczas ładowania baterii pole elektryczne przesuwa jony w kierunku grafitowej elektrody. Jednak jony, by zostać zatrzymane i przechowane w elektrodzie muszą przeniknąć barierę potencjału. Zespół pod kierunkiem Ibrahima Abou Hamada postanowił zbadać, jakie siły działają na jony w czasie, gdy się one przesuwają. Stworzyli komputerowy model składający się ze 160 atomów węgla ułożonych w 4 warstwy grafenu oraz 69 molekuł węglanu propylenu i 87 węglanu etylenu, które były modelowym elektrolitem. Do całości dodano dwa jony heksafluorofosforanu i 10 jonów litu. Do takiej konstrukcji uczeni przyłożyli wirtualne pole elektryczne, by zobaczyć, co się będzie działo. Okazało się, że gdy pole elektryczne popycha jony litu w kierunku grafenu, przeszkodą dla nich jest bariera potencjału. Dalsze badania wykazały, że barierę tę można bardzo łatwo pokonać. Wystarczy dodać oscylujące pole elektryczne do pola, które ładuje baterię. Wówczas jony litu bardzo łatwo przedostają się do grafenu i wiążą się z nim. To jednak nie wszystko. Uczeni zauważyli, że istnieje wykładnicza zależność pomiędzy amplitudą dodatkowego pola elektrycznego a prędkością przenikania jonów do grafenu. To oznacza, że niewielka zmiana amplitudy powoduje gwałtowne przyspieszenie tego procesu. Symulacja pokazała, że możliwe jest skonstruowanie urządzenia, które będzie bardzo szybko ładowało baterie. Naukowcy nie wykluczają, że może też ono zwiększyć gęstość mocy urządzenia. Przeprowadzenie fizycznych testów powinno być bardzo proste, możemy zatem przypuszczać, że już wkrótce się one rozpoczną. Niestety, nie oznacza to, że niedługo zobaczymy na naszych drogach samochody elektryczne z akumulatorami, które będzie można błyskawicznie naładować. Obecnie nie wiadomo bowiem, czy nowy sposób ładowania baterii nie skróci ich żywotności, ani jak długo mogą one przechowywać tak dostarczony ładunek.
- 2 odpowiedzi
-
- Mississippi State University
- Ibrahim Abou Hamad
- (i 4 więcej)
-
Naukowcy z California Institute of Technology (Caltech) niedawno opracowali nowe techniki obrazowania, które teraz pozwoliły im na wykonanie zdjęć pól elektrycznych tworzących się wskutek interakcji elektronów i fotonów. Mogli też śledzić zmiany zachodzące w strukturach w skali atomowej. Czterowymiarowa mikroskopia (4D) wykorzystuje pojedynczy elektron, który do tradycyjnej mikroskopii elektronowej wprowadza wymiar czasu, dzięki czemu możliwe jest śledzenie zmian w skali atomowej. Podczas testów naukowcy byli w stanie skupiać strumień elektronów na wybranym przez siebie obszarze obserwowanego obiektu. W tradycyjnej mikroskopii strumień elektronów uderza w obiekt, elektrony odbijają się od atomów obiektu, trafiają do detektora, dzięki któremu uzyskujemy obraz. Jeśli jednak atomy obiektu się poruszają, obraz jest zamazany, przez co części detali nie można dostrzec. Uczeni z Caltechu wykorzystali impulsy elektronów w miejsce stałego ich strumienia. Najpierw testowa próbka, w tym wypadku był to kawałek krystalicznego krzemu, jest podgrzewana za pomocą krótkiego impulsu lasera. Następnie trafia w nią femtosekundowy impuls elektronów. Dzięki temu, że trwa on niewiarygodnie krótko, atomy w próbce nie zdążą przemieścić się na zbyt dużą odległość, dzięki czemu uzyskujemy ostry obraz. Odpowiednio dobierając czas pomiędzy kolejnymi podgrzaniami próbki a bombardowaniem jej elektronami, naukowcy mogą wykonać całą serię "fotografii", którą następnie składają w "film". Technikę tą opracował wybitny naukowiec Ahmed Zewail, laureat Nagrody Nobla w dziedzinie chemii. Brał on też udział, wraz z Brettem Barwickiem i Davidem Flanniganem, w stworzeniu techniki nazwanej indukowaną przez fotony mikroskopią elektronową bliskiego pola (PINEM). Korzysta ona z faktu, że w nanostrukturach fotony generują zanikające pole elektryczne, które może być źródłem energii dla elektronów. Uczeni wykorzystali ten fakt do oświetlania niektórych materiałów impulsem lasera, co powodowało, że materiały te zaczynały "świecić". Rozbłysk trwał bardo krótko, od dziesiątek do setek femtosekund, wystarczająco jednak długo, by udało się go zarejestrować. Podczas swoich eksperymentów uczeni oświetlali impulsami lasera węglowe nanorurki i srebrne nanokable. Natychmiast po impulsie laserowym w kierunku próbek wysyłano elektrony, które "żywiły" się energią generowanych przez fotony pól elektrycznych. Ilość energii pobieranej przez elektrony była proporcjonalna do długości fali światła laserowego. Technika ta pozwala na obrazowanie zanikających pól elektrycznych dzięki badaniom zmian w poziomie energii poszczególnych elektronów. Jak zauważyli twórcy nowej techniki, otwiera ona nowe możliwości przed specjalistami zajmującymi się plazmoniką, fotoniką i dyscyplinami pokrewnymi. To, co jest najbardziej interesujące z punktu widzenia fizyki to fakt, że możemy obrazować fotony za pomocą elektronów. W przeszłości, z powodu trudności w odróżnieniu energii i momentu elektronów i fotonów, nie sądziliśmy, że uda się uzyskać technikę podobną do PINEM czy że uda się zwizualizować to w czasie i przestrzeni - stwierdził Zewail.
- 3 odpowiedzi
-
- California Institute of Technology
- Caltech
- (i 9 więcej)
-
„Supermrówki": małe, brązowe i niebezpieczne. Należą do rodzaju Lasius neglectus i zwane są inaczej mrówkami tureckimi. Zaledwie w ciągu 20 lat potrafiły przywędrować znad Morza Czarnego na teren Europy. Dotarły nawet do Wielkiej Brytanii, gdzie po raz pierwszy widziano je w parku w Gloucestershire. W Niemczech mrówki tureckie pojawiły się osiem lat temu w Jenie. Preferują ogrody i parki i z tych właśnie miejsc wypierają stopniowo powszechnie występujące mówki ogrodowe oraz małe zwierzęta jak na przykład pająki. Brytyjscy naukowcy odkryli, że ten rodzaj mrówek posiada prawdopodobnie pewną specyficzną właściwość: zmysł odbierania pól elektrycznych, a które mają dla nich tak ogromną siłę przyciągania, że zwierzęta te zapominają nawet o jedzeniu. W efekcie powodują zwarcia w urządzeniach elektrycznych, a tym samym wywołują pożary. Sylvia Cremer z uniwersytetu w Regensburgu badała, w jaki sposób mrówki tak łatwo dostosowują się do otoczenia, a tym samym tak szybko rozprzestrzeniają się na terenie Europy. Lasius neglectus przypomina wyglądem mrówkę ogrodową, ale liczba tych zwierząt w kolonii jest 100 razy większa. Według Cremer, sukces mrówek tureckich polega głównie na ich strukturze społecznej. W porównaniu do pozostałych podgatunków szukają partnerów w obrębie swojej kolonii, nie tak jak w pozostałych przypadkach w koloni partnerskiej. Mogą więc posiadać kilka królowych. Odkrycie to pozwala na stworzenie nowych sposobów zwalczania tych o owadów, gdyż są one odporne na zwykłe insektycydy. Dla przykładu czerwona mrówka ogniowa, która zawędrowała do Stanów Zjednoczonych, wyrządza tam rocznie szkody w wysokości około 600 milionów euro.
-
- zwarcie
- pole elektryczne
-
(i 3 więcej)
Oznaczone tagami:
-
Badacze z Lawrence Berkeley National Laboratory dowiedli, że pole elektryczne może posłużyć do przełączania stanów w multiferroikach. To z kolei umożliwi wykorzystanie w przyszłości tych materiałów do przechowywania danych zarówno za pomocą zjawisk magnetycznych jak i spintronicznych. Multiferroiki to materiały charakteryzujące się jednocześnie więcej niż jedną cechą materiałów ferroikowych. Ich cztery podstawowe właściwości to ferromagnetyzm, ferroelektryczność, ferroelastyczność i ferrotoroidalność. Najpierw jego zespół wzbogacił żelazian bizmutu o akceptory jonów wapnia, gdyż zwiększają one ilość prądu, który może przepłynąć przez BiFeO3. Spowodowało to powstanie pozytywnie naładowanych wakancji tlenowych. Po przyłożeniu pola elektrycznego, wakancje te stały się ruchome. Powędrowały do góry materiału, tworząc złącze typu n, a nieruchome jony wapnia utworzyły w dolnej części materiału złącze typu p. Po odwróceniu kierunku pola elektrycznego obszary p i n zamieniły się miejscami. Z kolei zastosowanie pola elektrycznego o średnim natężeniu pozwoliło na wykasowanie obszarów p i n. Na takiej samej zasadzie działają współczesne urządzenia CMOS, gdzie przyłożenie napięcia pozwala na kontrolowanie właściwości przepływu elektronów i zmienia oporność z wysokiej (izolator) na niską (przewodnik) - zauważa Ramesh. W typowym urządzeniu CMOS różnica w oporności obu stanów jest milionkrotna. W żelazianie bizmutu osiągnięto dotychczas tysiąckrotną różnicę pomiędzy stanami on i off. To i tak dwa razy więcej, niż najlepszy wynik uzyskany za pomocą pola magnetycznego. Wystarczy też, by urządzenia z żelazianu bizmutu działały.
-
- pole magnetyczne
- pole elektryczne
-
(i 5 więcej)
Oznaczone tagami:
-
Amerykańska firma NovoCure zaprezentowała wyniki badań klinicznych nad produkowanym przez siebie urządzeniem, nazwanym Novo-TTF. Jest to maszyna, której zadaniem jest zmniejszenie masy guza nowotworowego przed podjęciem próby jego usunięcia metodą chirurgiczną. Działanie Novo-TTF opiera się na wytwarzaniu wewnątrz tkanki nowotworowej pola elektrycznego o ściśle określonych parametrach. Dzięki precyzyjnej regulacji urządzenia możliwe jest wytworzenie w guzie warunków, które prowadzą do zniszczenia dzielących się komórek nowotworowych i jednoczesnego zachowania zdrowej części piersi. W połączeniu z odpowiednio dobraną chemioterapią możliwe jest uzyskanie w ten sposób tzw. efektu addytywnego (działanie leku i wytworzonego pola sumuje się) lub synergistycznego (efekt współdziałania obu środków jest wyższy niż suma ich skuteczności przy stosowaniu osobno), zależnie od rodzaju podawanego preparatu. Badania na ludziach wykazały wysoką skuteczność nowej techniki. Testy objęły pięć pacjentek z rakiem piersi, u których planowana była operacja usunięcia guza. Dzięki zastosowaniu przed zabiegiem chirurgicznym łączonego leczenia chemioterapeutykiem oraz polem elektrycznym uzyskano u badanych pań efekt pomniejszenia guza o co najmniej 86%. U jednej z pacjentek udało się nawet usunąć guz całkowicie jeszcze przed interwencją chirurga. Nie stwierdzono także poważnych efektów ubocznych stosowania testowanej terapii - najsilniejszym z niepożądanych objawów było łagodne podrażnienie skóry w miejscu przyłożenia elektrod. Na szczęście zmiana ta jest łatwa do wyleczenia przy użyciu prostych kremów. W związku z zachęcającymi wynikami planowane są dalsze badania na większej grupie chorych. NovoCure pracuje równocześnie nad zastosowaniem swojego produktu w leczeniu glejaka wielopostaciowego, wyjątkowo groźnego nowotworu mózgu. Do badania zakwalifikowano pacjentów, u których guz odnowił się pomimo wcześniejszego zastosowania technik chirurgicznych oraz radioterapii. W porównaniu do chorych leczonych standardowo, dodanie użycia Novo-TTF do schematu leczenia pozwoliło na podwojenie mediany przeżycia (czasu, którego dożywa połowa leczonych pacjentów). Obecnie maszyna przechodzi trzecią fazę badań klinicznych, co oznacza szansę na wprowadzenie do rutynowego leczenia już za kilka lat.
- 35 odpowiedzi
-
- zabieg chirurgiczny
- radioterapia
- (i 6 więcej)