Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Pseudomonas aeruginosa' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 9 wyników

  1. Skład mikroflory skórnej wpływa na to, jak bardzo dany człowiek jest atrakcyjny dla komarów. Odkrycie to ma spore znaczenie dla zapobiegania malarii (PLoS ONE). Naukowcy, których pracami kierował Niels Verhulst z Uniwersytetu w Wageningen, prowadzili eksperymenty na Anopheles gambiae. Zauważyli, że osoby z liczniejszymi, lecz mniej zróżnicowanymi gatunkowo bakteriami na skórze były dla tych komarów bardziej atrakcyjnym kąskiem. Biolodzy dywagują, że u ludzi z bardziej zróżnicowaną mikroflorą skórną mogą występować bakterie, które emitują lotne związki odstraszające owady albo maskujące coś, co odgrywa ważną rolę w komunikowaniu, że w pobliżu znajduje się ofiara do ugryzienia. W badaniach, których wyniki ukazały się w zeszłym roku także w PLoS ONE, Verhulst i jego niemieccy współpracownicy zademonstrował, jak działają na A. gambiae lotne związki produkowane przez 5 gatunków bakterii. Mieszanki związane z niektórymi w większym stopniu przyciągały komary, podczas gdy inne wyraźnie im się nie podobały. Jako przykład tych ostatnich można podać woń związaną z pałeczką ropy błękitnej (Pseudomonas aeruginosa). W ramach najnowszego studium Holendrzy zliczali komórki bakteryjne w hodowlach oraz przeprowadzili sekwencjonowanie 16S rRNA. Także i teraz stwierdzili, że A. gambiae nie odpowiadają produkty szczepów Pseudomonas sp. Poza tym do listy repelentów dopisano Variovorax sp.
  2. Uczonym udało się wykorzystać jedną bakterię w roli zabójcy innej. Naukowcy z Singapuru zmodyfikowali Escherichia coli tak, by w obecności Pseudomonas aeruginosa eksplodowała, uwalniając toksyny zabijające tę bakterię. P. aeruginosa jest odpowiedzialna za trudne w leczeniu infekcje, szczególnie u osób z osłabionym układem odpornościowym. Bakteria ta upodobała sobie układ oddechowy i trawienny. Jest ona sprawcą około 10% infekcji szpitalnych. Zwykle zwalcza się ją dużymi dawkami antybiotyków, które jednak nie zawsze działają, a przy okazji zabijają pożyteczne bakterie. Chueh Loo Poh i Matthew Wook Chang z Uniwersytetu Technologicznego Nanyang zmodyfikowali DNA E.coli tak, by wykrywała ona obecność molekuły LasR, która jest wykorzystywana przez P. aeruginosa do komunikacji. Gdy E.coli odkryje LasR zaczyna produkować tak dużo piocyny, że w pewnym momencie eksploduje zbijając P. aeruginosa. Badania wykazały wysoką skuteczność tej metody. Pozwala ona na pozbycie się 99% P.aeruginosa gdy nie tworzy ona biofilmu. Co ważniejsze, gdy E.coli i P.aeruginosa tworzą ochronny biofilm, dochodzi do zabicia 90% P.aeruginosa. Najpoważniejszą wadę nowej techniki jest fakt, że zmieniona genentycznie E.coli nie porusza się. Może zatem zabić P.aeruginosa, która sama znajdzie się w jej pobliżu. Singapurczycy mają jednak nadzieję, że znajdą kterie, które będą aktywnie zwalczały P.aeruginosa, uzyskując może nawet 100-procentową skuteczność. Chcą też sprawdzić nową metodę na myszach, by dowiedzieć się, czy będzie ona równie skuteczna oraz zbadać ewentualne skutki uboczne jej stosowania.
  3. Bakterie potrafią sprawnie pływać w cieczach, posługując się wicią jak śrubą napędową. Na powierzchni pełzają, potrafią się też szybko poruszać, czepiając się pilami podłoża i przeciągając. Ale chodzenie wydawało się od zawsze zarezerwowane dla organizmów stojących znacznie wyżej w rozwoju. A bakterie mogły chodzić tylko w dowcipach. Ale świat właśnie stanął na głowie, a wszystko to dzięki naukowcom z University of Illinois w Urbana-Champaign, którzy odkryli, że niektóre bakterie potrafią chodzić. Dosłownie chodzić i to całkiem sprawnie. Badania pokazały, że jest to całkiem typowa forma poruszania się. Po podziale bakterii na dwie nowe, prawie 70% nowych komórek wstawało „wyprowadzało się" od swojego bliźniaka. Jak sądzą naukowcy, najprawdopodobniej również w ten sposób bakterie podążają w kierunku przyciągających je substancji, lub uciekają od niebezpieczeństwa. Umiejętność stawania na pilach i chodzenia oznacza, że bakterie mogą poruszać się nie tylko po płaskim, ale również w trzech wymiarach. To znacząco zwiększa ich zasięg i szybkość, z jaką penetrują i zajmują teren. Zespół Wonga zajmuje się badaniem, w jaki sposób bakterie tworzą biofilmy (błony, bakteryjne kolonie) odporne na działanie szkodzących im substancji, w tym środków dezynfekcyjnych i antybiotyków. Umiejętność poruszania się na pilach może mieć z tym związek, a uniemożliwienie im takiego sposobu poruszania się mogłoby utrudnić powstawania biofilmów. Od teraz dowcipy o chodzących bakteriach stały się śmieszne inaczej. Studium, które wielu naukowców określa jako przełomowe, ukazało się 8 października w czasopiśmie Nature.
  4. Najprostszym sposobem na wywołanie oporności bakterii na antybiotyk jest eksponowanie ich na rosnące dawki danego środka. U pacjentów cierpiących na mukowiscydozę, zwaną także zwłóknieniem torbielowatym (ang. cystic fibrosis - CF), oporność może jednak rozwinąć się w sposób niezależny od kontaktu z lekami. Jak do tego dochodzi, wyjaśniają badacze z University of Washington. Przyczyną zwiększonej podatności pacjentów cierpiących na CF na infekcje jest zaleganie w drogach oddechowych gęstego śluzu, utrudniającego usuwanie ciał obcych. Sama obecność bakterii nie wyjaśnia jednak przyczyn ich narastającej oporności na antybiotyki. Chcąc rozwiązać tę zagadkę, badacze kierowani przez dr. Lucasa Hoffmana poddali analizie genetycznej potencjalnie chorobotwórcze bakterie Pseudomonas aeruginosa pobrane od chorych na mukowiscydozę. Przeprowadzone badania wykazały, że u bakterii żyjących w gęstym, ubogim w tlen śluzie dochodzi wyjątkowo często do mutacji w genie o nazwie lasR. Zmiana ta ułatwia bakteriom przeżycie w warunkach obniżonej dostępności tlenu i jednocześnie pozwala im na pozyskiwanie energii z azotanów, zawartych w wydzielinie w znacznej ilości. Jak wykazał zespół dr. Hoffmana, ubocznym efektem mutacji w lasR jest spadek podatności P. aeruginosa na stres oksydacyjny, czyli uszkodzenie przez nadmiar wolnych rodników pojawiających się we wnętrzu komórki. W związku z faktem, że dwa antybiotyki stosowane często do zwalczania tej bakterii - tobramycyna oraz ciprofloksacyna - działają m.in. poprzez wywołanie stresu oksydacyjnego, badacze wyjaśnili tym samym przyczyny spadku lekowrażliwości. Mówiąc najprościej, u chorych na CF bakterie mogą wykształcić oporność "drogą okrężną", tzn. poprzez przebywanie w środowisku sprzyjającym istnieniu mutacji w genie lasR. To dość zaskakujące odkrycie, gdyż wcześniej wydawało się, że spadek podatności na daną substancję można wywołać wyłącznie poprzez ekspozycję na nią lub poprzez bezpośrednią modyfikację genomu bakterii. Zdaniem dr. Hoffmana P. aeruginosa mogą nie być jedynym patogenem zdolnym do podobnej przemiany. Potwierdzenie tej hipotezy wymaga jednak przeprowadzenia dalszych badań.
  5. Nowa klasa środków bakteriobójczych, opartych na związkach srebra, przeszła pomyślnie testy na myszach chorych na zapalenie płuc. Autorzy eksperymentu, badacze z University of Akron (stan Ohio), planują jak najszybsze rozpoczęcie testów na ludziach. Do doświadczenia wykorzystano myszy zakażone bakteriami Pseudomonas aeruginosa, niebezpiecznymi także dla człowieka. Do leczenia zwierząt wykorzystano nanocząsteczki opłaszczone kompleksami karbenowo-srebrowymi (ang. silver carbene complexes - SCCs) - nową klasą środków bakteriobójczych o szerokim spektrum zastosowania. Preparat podawano zwierzętom drogą wziewną. Wyniki badań są niezwykle optymistyczne. Infekcję P. aeruginosa przeżyły wszystkie zwierzęta leczone SCCs. Dla porównania, w grupie kontrolnej, leczonej nanocząsteczkami bez dodatku leku, żadne ze zwierząt nie przetrwało nawet trzech dni. Dodatkową korzyścią ze stosowania nowej formy terapii jest dawkowanie preparatu, polegające na przyjmowaniu go zaledwie jeden raz dziennie. Z wieloletniego doświadczenia lekarzy wynika, iż zmniejszenie częstotliwości przyjmowania leków znacząco obniża prawdopodobieństwo popełnienia błędu mogące się zakończyć niepowodzeniem całego leczenia.
  6. Życie pacjentów z mukowiscydozą (ang. cystic fibrosis - CF) już niedługo może stać się nieco prostsze. Naukowcy z Dartmouth Medical School odkryli nowy sposób na skuteczne zahamowanie infekcji towarzyszących tej chorobie. Mukowiscydoza jest jedną z najczęstszych chorób genetycznych człowieka. Jej przyczyną jest defekt w genie CFTR, kodującym tzw. kanał chlorkowy - białko odpowiedzialne za transport jonów chlorkowych (Cl-) do światła dróg oddechowych. Efektem tej aktywności powinno być przenikanie wody i rozrzedzenie wytwarzanego w tym miejscu śluzu, lecz u pacjentów z CF proces ten nie zachodzi prawidłowo. Zagęszczenie śluzu i utudnienie jego odprowadzania prowadzi m.in. do uporczywych infekcji bakteriami Pseudomonas aeruginosa. Sytuację komplikuje dodatkowo objaw uboczny CF, jakim jest nadmierne wydzielanie jonów żelaza. Ich podwyższone stężenie znacząco ułatwia rozwój mikroorganizmu. Standardową metodą leczenia zakażeń P. aeruginosa jest stosowanie antybiotyku tobramycyny. Niestety, z czasem bakterie nabywają oporność na ten preparat, przez co efektywna dawka leku przekracza nawet dziesięciokrotnie dawkę możliwą do dostarczenia i bezpieczną dla człowieka. Jak się jednak okazuje, problemowi temu można zaradzić... Do badań wykorzystano hodowle komórkowe symulujące drogi oddechowe człowieka. Badacze umieścili w nich komórki P. aeruginosa, a następnie, po rozwinięciu się "infekcji", rozpoczęli leczenie. Zmodyfikowana terapia polegała na zastosowaniu tobramycyny oraz jednego z dwóch leków: deferoksaminy lub deferasiroksu. Oba związki należą do tzw. chelatorów żelaza, czyli związków zdolnych do trwałego wiązania jonów tego życiodajnego pierwiastka. Jak wykazano w eksperymencie, zastosowanie nowej metody pozwoliło na obniżenie liczby bakterii w hodowli aż o 90%. Oczywiście, skuteczność nowej terapii będzie trzeba sprawdzić także na ludziach, lecz wstępne dane są bez wątpienia obiecujące. Dokonane odkrycie może oznaczać, że uporczywe infekcje dróg odechowych pacjentów cierpiących na mukowiscydozę będzie można leczyć za pomocą zaledwie dwóch leków. Co więcej, oba preparaty są od wielu lat dostępne na rynku, co rodzi nadzieję na szybkie wprowadzenie nowej terapii do praktyki klinicznej.
  7. Amerykańscy naukowcy zidentyfikowali prosty sposób pozwalający na walkę z bakteriami Pseudomonas aeruginosa, odpowiedzialnymi za tzw. zakażenia szpitalne oraz groźne infekcje u osób o obniżonej odporności. Do skutecznego zablokowania rozwoju mikroorganzmów wystarczy pojedynczy enzym oraz syntetyczny polimer zbudowany z aminokwasów - jednostek budulcowych wchodzących m.in. w skład białek. Nowa metoda walki z bakteriami P. aeruginosa wykorzystuje ich uzależnienie od białka, aktyny F, oraz nici DNA - składników pozyskiwanych z ludzkich komórek odpornościowych zwanych neutrofilami, przybywających na miejsce infekcji i obumierających po wykonaniu swojego zadania. Jak wykazały wcześniejsze badania, fragmenty komórek gospodarza są wykorzystywane jako budulec dla tzw. biofilmów - zorganizowanych kolonii zdolnych do przytwierdzania się i wzrostu np. na powierzchni narzędzi chirurgicznych lub dróg oddechowych. Pomysł wykorzystania struktury biofilmów do walki z P. aeruginosa zrodził się w głowach badaczy z amerykańskiego szpitala National Jewish Health oraz Uniwersytetu Kolorado. Aby zneutralizować składniki konieczne do wytworzenia kolonii bakteryjnych, badacze zastosowali DNAzę - enzym zdolny do rozkładania DNA - oraz syntetyczny polimer kwasu asparaginowego, jednego z aminokwasów wchodzących w skład cząsteczek białek. Jak dowiedziono w eksperymencie, ładunek elektryczny reszt kwasu asparaginowego pozwolił na rozbicie kompleksów aktyny F na mniejsze fragmenty, określane jako aktyna G. DNAza pozwoliła z kolei na rozcięcie nici DNA na drobne fragmenty. Obie te zmiany uniemożliwiły bakteriom stworzenie stabilnego biofilmu, dzięki któremu mogłyby chronić się przed działaniem układu odpornościowego oraz antybiotyków. Opisywany eksperyment został przeprowadzony w warunkach in vitro, a więc poza organizmem żywym. Nie oznacza to jednak, że jest on bezużyteczny. Jego wyniki dostarczają bowiem wskazówek, które mogą ułatwić stworzenie skutecznej terapii zapobiegającej infekcjom Pseudomonas aeruginosa, trapiącym m.in. osoby podłączone do respiratorów, chore na mukowiscydozę czy przebywające na oddziałach chirurgii.
  8. Naukowcy z Uniwersytetu Calgary odkryli nową metodę walki z ciężkimi infekcjami płuc u osób chorych na mukowiscydozę, jedną z najczęstszych chorób genetycznych człowieka. Autorami odkrycia są naukowcy z zespołu prowadzonego przez dr. Michaela Surette'a. Badacze opracowali metodę walki z infekcjami wywołanymi przez Pseudomonas aeruginosa - bakterię, zwaną pałeczką ropy błękitnej, powodującą ciężkie i gwałtownie rozwijające się infekcje. Mikroorganizm ten, powszechnie występujący w drogach oddechowych wielu ludzi, może stać się poważnym zagrożeniem dla zdrowia i życia u osób podatnych na jego atak. Ryzyko zakażenia pałeczkami ropy błękitnej wzrasta np. w przebiegu mukowiscydozy, jednej z najczęstszych chorób genetycznych człowieka. W jej przebiegu dochodzi m.in. do zalegania gęstego śluzu w drogach oddechowych. Utrudnia to usuwanie nadmiaru bakterii, co sprzyja rozwojowi infekcji. Jednym z mikroorganizmów "korzystających" z tej sytuacji jest właśnie P. aeruginosa. Leczenie zakażeń wywołanych przez pałeczkę jest bardzo często ciężkie, gdyż bakteria ta z łatwością nabywa oporność na większość stosowanych antybiotyków, niejednokrotnie pozbawiając lekarzy jakiejkolwiek szansy na skuteczną interwencję. Okazuje się jednak, że mikroorganizm ten ma słaby punkt: jego zjadliwość (wirulencja) jest zależna od obecności innych, znacznie bardziej podatnych na antybiotyki gatunków. Kanadyjscy badacze zaobserwowali, że zdolność P. aeruginosa do infekcji jest w dużym stopniu zależna od bakterii uznawanych dotychczas za mało istotne dla rozwoju choroby. Mowa o paciorkowcach z grupy Streptococcus milleri group (SMG), spokrewnionych z gatunkiem S. milleri. Obserwacja kolonii mikroorganizmów atakujących płuca wykazała, że zjadliwość P. aeruginosa jest ściśle zależna od obecności bakterii SMG w jej otoczeniu. W przeciwieństwie do pałeczek ropy błętkitnej, bakterie SMG są wrażliwe na większość stosowanych powszechnie antybiotyków. Eliminacja paciorkowców z dróg oddechowych może więc być skutecznym sposobem leczenia zapalenia płuc związanego z mukowiscydozą. Przewidywania naukowców potwierdzono w warunkach klinicznych. Eksperyment przeprowadzili lekarze ze szpitala Foothills w Calgary. Medykom udało się szybko opanować infekcję i poprawić stan ciężko zakażonych pacjentów. Doświadczenie przeprowadzono co prawda na niewielkiej grupie chorych, lecz jego wyniki bez wątpienia dostarczają silnych przesłanek na rzecz zmiany strategii leczenia niektórych przypadków zapalenia płuc. Istnieje także duża szansa, że podobny sukces jest możliwy w wielu innych sytuacjach, w których dochodzi do infekcji P. aeruginosa, nie tylko u osób cierpiących na mukowiscydozę. O eksperymencie Kanadyjczyków donosi najnowszy numer czasopisma Proceedings of the National Academy of Science.
  9. Naukowcy amerykańscy stworzyli odporną na bakterie skórę. Uważa się, że pewnego dnia uratuje ona życie wielu poparzonym osobom. Po dodaniu do kultury tkankowej genetycznie zmodyfikowane komórki skóry zabijają więcej bakterii niż zwykłe komórki skóry. Badacze z University of Cincinnati mają nadzieję, że na początku bieżącego roku rozpoczną się testy kliniczne z udziałem zwierząt. Poparzenia zwiększają podatność skóry na zakażenie, ponieważ nie jest ona w stanie chronić się przed bakteriami tak samo skutecznie, jak zdrowa tkanka. Genetycznie zmodyfikowane komórki zwiększają szanse na przyjęcie się przeszczepów oraz zmniejszają zależność od antybiotyków. Jak zauważa szefowa badań, dr Dorothy Supp, wyhodowane substytuty skóry mają także swoje ograniczenia. [...] Ponieważ w czasie, kiedy decydują się losy przeszczepu, nie są połączone z krwioobiegiem, nie mają dostępu do antybiotyków czy przeciwciał układu odpornościowego, które pozwoliłyby zwalczyć zakażenie. W ten sposób stają się na nie bardziej podatne. Amerykanie zmienili genetycznie komórki w taki sposób, by wytwarzały więcej ludzkiej beta defensyny 4 (ang. human beta defensin 4, HBD4). Okazało się, że potrafią one zwalczyć więcej bakterii niż zwykłe komórki skóry. HBD4 należy do klasy białek występujących w całym organizmie, wchodzących w skład naturalnego systemu obrony. Działanie zmodyfikowanych komórek testowano na występujących powszechnie w szpitalach pałeczkach ropy błękitnej (Pseudomonas aeruginosa). Dr Supp uważa, że poleganie w mniejszym stopniu na antybiotykach zmniejszy zagrożenie ze strony wzrastającej lekooporności bakterii.
×
×
  • Dodaj nową pozycję...