Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' molekuła' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 9 wyników

  1. Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia. Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan. Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona. Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona. Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe. Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach. Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych. « powrót do artykułu
  2. Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii. Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu. Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex. Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów. Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber. Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki. To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin. Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra. Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni. « powrót do artykułu
  3. Nasz mózg składa się z miliardów neuronów, które muszą być chronione przed wpływem niekorzystnych czynników zewnętrznych. Rolę tej ochrony spełnia bariera krew-mózg. Ta mierząca 650 km wyspecjalizowana bariera między naczyniami krwionośnymi a mózgiem decyduje, jakie substancje mogą do mózgu przeniknąć. Bardzo dobrze spełnia swoją rolę, ale z punktu widzenia chorób neurologicznych jest najgorszym wrogiem współczesnej medycyny. Blokuje bowiem również dostęp leków do mózgu. Naukowcy z Yale University poinformowali na łamach Nature Communications, że udało im się opracować molekułę, która na kilka godzin otwiera barierę krew-mózg, umożliwiając dostarczenie leków. Po raz pierwszy udało się kontrolować barierę krew-mózg za pomocą molekuły, mówi profesor Anne Eichmann, jedna z głównych autorek badań. Doktor Kevin Boyé dołączył do zespołu profesor Eichmann w 2017 roku i zaczął badać molekułę Unc5B. To receptor śródbłonka, do którego ekspresji dochodzi w komórkach śródbłonka naczyń włosowatych. Uczony zauważył, że pozbawione tego receptora embriony myszy szybko umierały, gdyż nie tworzył się u nich prawidłowy układ krwionośny. To wskazywało, że Unc5B odgrywa ważną rolę w jego powstawaniu. Ponadto stwierdził, że u takich embrionów doszło do znaczącego spadku poziomu białka Claudin-5, które odpowiada za ścisłe przyleganie do siebie komórek śródbłonka w barierze krew-mózg. Naukowcy doszli więc do wniosku, że Unc5B odgrywa ważną rolę w utrzymaniu bariery krew-mózg. Nie od dzisiaj wiadomo, że rozwój i funkcjonowanie bariery krew-mózg jest uzależnione od szlaku sygnałowego Wnt. Dotychczas nie były znane powiązania pomiędzy Unc5B a tym szlakiem. Dzięki zaś nowym badaniom naukowcy zauważyli, że Unc5B działa jak regulator tego szlaku. Boyé poszedł więc o krok dalej. Pozbawił dorosłe myszy, z już rozwiniętą barierą krew-mózg, receptora Unc5B i okazało się, że gdy go zabrakło, bariera pozostała otwarta. Następnie uczony postanowił sprawdzić, który z ligandów – cząsteczek wiążących się z receptorami i wysyłających sygnały pomiędzy i wewnątrz komórkami – ma wpływ na integralność bariery. Okazało się, że bariera jest otwarta, gdy zabraknie ligandu Netrin-1. Naukowcy opracowali więc przeciwciało, które uniemożliwiało Netrin-1 połączenie się z receptorem. Po wstrzyknięciu przeciwciała dochodziło do zaburzenia szlaku sygnałowego Wnt i bariera krew-mózg była przez jakiś czas otwarta. W najbliższej przyszłości naukowcy chcą skupić się na sprawdzeniu, czy takie otwieranie bariery krew-mózg jest bezpieczne, czy nie niesie ze sobą żadnych ryzyk oraz czy same przeciwciała nie są toksyczne. To otwiera pole do dalszych interesujących badań nad kwestią powstawania samej bariery oraz możliwości manipulowania ją w celu dostarczania leków, mówi Eichmann. « powrót do artykułu
  4. Rozgwieżdżone niebo od stuleci intryguje i fascynuje. Nie sposób nie rozważać jakie tajemnice skrywają te bliskie, lecz jeszcze niezbadane, jak i odległe zakątki kosmosu. Gwiazdy rodzą się z gazu i pyłu, rozproszonego tak bardzo, że mijają dni, a nawet tygodnie zanim poszczególne atomy lub cząsteczki zderzą się ze sobą. Ze względu na ogromne rozrzedzenie gazu, obecność promieniowania i niskie temperatury panujące w przestrzeniach międzygwiazdowych, znajdujące się tam związki chemiczne mogą być inne od tych, które są nam dobrze znane na Ziemi. Najnowsze badania naukowców z Instytutu Chemii Fizycznej Polskiej Akademii Nauk dotyczą nietypowych, wręcz egzotycznych molekuł, które zdają się być ciekawe z punktu widzenia astrochemii i być może uda się je kiedyś uchwycić w kosmosie. Przestrzenie międzygwiazdowe Przestrzeń pomiędzy gwiazdami nie jest pusta. Znajdujemy tam głównie (ale nie tylko!) wodór, hel i kosmiczny pył. Muszą minąć miliony lat zanim obłoki tej materii przekształcą się w zarodek gwiazdy i zaświecą przynajmniej tak jasno jak nasze rodzime Słońce. Chemii zachodzącej w obłokach międzygwiazdowych sprzyja promieniowanie, a czasem także wybuchy pobliskich, ginących gwiazd, a są to warunki na tyle drastyczne, że próżno je symulować w laboratorium. To jednak nie przeszkadza w poszukiwaniu związków chemicznych, które samoistnie nie powstałyby na Ziemi, lecz być może kiedyś zostaną odkryte w Kosmosie. Chemiczna różnorodność w kosmosie Nasz punkt obserwacyjny to tylko niewielka planeta w morzu galaktyk. Do dziś nie do końca rozgryźliśmy reaktywność atomów i cząsteczek w ekstremalnych warunkach. Od kilku dekad Jowisz i Saturn przykuwają uwagę ze względu na odkrycie w ich atmosferze analogu amoniaku zawierającego fosfor – fosfiny, a w roku 2020 do grona równie intrygujących posiadaczy tej cząsteczki przypuszczalnie dołączyła także Wenus. Dlaczego tak wielkie znaczenie ma poszukiwanie związków fosforu w kosmosie? Bez niego nie byłoby DNA i RNA, procesów enzymatycznych, czy hydroksyapatytu będącego naturalnym budulcem naszych kości. Choć w biomasie pierwiastek ten jest szósty pod względem występowania, a w skorupie ziemskiej dwunasty, to w obłokach międzygwiazdowych jest go nawet miliard razy mniej. O związkach fosforu w przestrzeni międzygwiazdowej wiemy ciągle niewiele; wykryto dotychczas jedynie niewielkie molekuły posiadające do czterech atomów, tj. PN, CP, PO, HCP, CCP, PH3 i NCCP. Większość z nich jest nietrwała w standardowych warunkach laboratoryjnych. Podążając śladami chemii fosforu, profesor Robert Kołos, członkowie jego zespołu dr Arun-Libertsen Lawzer i dr Thomas Custer oraz współpracujący z nimi profesor Jean-Claude Guillemin z Ecole Nationale Supérieure de Chimie de Rennes (Francja) zaprezentowali w grudniowym numerze periodyku Angewandte Chemie wydajną syntezę cząsteczki HCCP, indukowaną światłem ultrafioletowym i prowadzoną w warunkach kriogenicznych. Cząsteczkę odpowiedniego prekursora  – tutaj jest to fosfapropyn, CH3CP – naświetlamy ultrafioletem, stopniowo odzierając ją z atomów wodoru. Tak powstaje HCCP, czteroatomowy dziwoląg. Sztuczka polega na wykorzystaniu zamarzniętego gazu szlachetnego jako środowiska reakcji – mówi dr Lawzer. Dotychczas identyfikacja cząsteczki HCCP była możliwa wyłącznie w zakresie mikrofalowym, a teraz poszerzono wiedzę na jej temat podając długości fal z zakresu podczerwonego i ultrafioletowego. Profesor Kołos komentuje: Niektórzy mogą ze szkoły pamiętać, że fosfor jest w związkach chemicznych trój- lub pięciowartościowy. Otóż w HCCP jest on jednowartościowy – realizując pojedyncze wiązanie do sąsiadującego węgla. To bardzo niezwykłe. Niezależnie od produktu końcowego - HCCP, naukowcy zaobserwowali nie mniej ważny produkt pośredni, potwierdzając istnienie cząsteczki fosfaallenu, CH2=C=PH. Nigdy dotąd nie była ona uzyskana w warunkach laboratoryjnych, a jedynie teoria wskazywała na możliwości jej tworzenia. Wśród cząsteczek astrochemicznej menażerii, również najważniejszych, są takie, których typowy chemik raczej za „prawdziwe” by nie uznał – widząc w nich jedynie molekularne fragmenty lub nietrwałe osobliwości – przyznaje prof. Kołos. Uchwycenie cząsteczki CH2=C=PH i poznanie jej spektroskopii jest istotne, gdyż, niezależnie od kontekstu astrochemicznego, poszerza ogólną wiedzę o chemii związków fosforoorganicznych. Czy kiedyś odnajdziemy HCCP lub CH2=C=PH w kosmosie? Obłoki międzygwiazdowe to rezerwuar materii bez wątpienia kryjący jeszcze liczne związki fosforu. Niektóre z nich zapewne zostaną niebawem odkryte, a na inne przyjdzie nam dłużej poczekać. « powrót do artykułu
  5. Niemieccy fizycy z Uniwersytetu im. Goethego we Frankfurcie dokonali najkrótszego w historii pomiaru czasu. We współpracy z naukowcami z DESY (Niemiecki Synchrotron Elektronowy) w Hamburgu i Instytutu Fritza Habera w Berlinie zmierzyli czas przejścia światła przez molekułę. Dokonany pomiar mieści się w przedziale zeptosekund. W 1999 roku egipski chemik Ahmed Zewail otrzymał Nagrodę Nobla za zmierzenie prędkości, z jaką molekuły zmieniają kształt. Wykorzystując laser stwierdził, że tworzenie się i rozpadanie wiązań chemicznych odbywa się w ciągu femtosekund. Jedna femtosekunda to zaś 0,000000000000001 sekundy (10-15 s). Teraz zespół profesora Reinharda Dörnera po raz pierwszy w historii dokonał pomiarów odcinków czasu, które są o cały rząd wielkości krótsze od femtosekundy. Niemcy zmierzyli, ile czasu zajmuje fotonowi przejście przez molekułę wodoru. Okazało się, że dla średniej długości wiązania molekuły czas ten wynosi 247 zeptosekund. To najkrótszy odcinek czasu, jaki kiedykolwiek udało się zmierzyć. Jedna zeptosekunda to 10-21 sekundy. Pomiarów dokonano wykorzystując molekułę H2, którą wzbudzono w akceleratorze za pomocą promieniowania rentgenowskiego. Energia promieni została dobrana tak, by pojedynczy foton wystarczył do wyrzucenia obu elektronów z molekuły. Elektrony zachowują się jednocześnie jak cząstki i fale. Wyrzucenie pierwszego z nich skutkowało pojawieniem się fali, po chwili zaś dołączyła fala drugiego elektronu. Z kolei foton zachowywał się jak płaski kamyk, który dwukrotnie skakał po falach. Jako, że znaliśmy orientację przestrzenną molekuły wodoru, wykorzystaliśmy interferencję fal obu elektronów, by dokładnie obliczyć, kiedy foton dotarł do pierwszego, a kiedy do drugiego atomu wodoru. Okazało się, że czas, jaki zajęło fotonowi przejście pomiędzy atomami, wynosi do 247 zeptosekund, w zależności od tego, jak daleko z punktu widzenia fotonu znajdowały się oba atomy, wyjaśnia Sven Grudmann. Profesor Reinhard Dörner dodaje: Po raz pierwszy udało się zaobserwować, że elektrony w molekule nie reagują na światło w tym samym czasie. Opóźnienie ma miejsce, gdyż informacja w molekule rozprzestrzenia się z prędkością światła. Dzięki tym badaniom możemy udoskonalić naszą technologię i wykorzystać ją do innych badań. « powrót do artykułu
  6. W meteorytach znajdowano już wiele molekuł będących składnikami życia, co wzmacnia teorie mówiące o jego pozaziemskim pochodzeniu. Teraz znaleziono kolejną z takich molekuł – cukier, będący ważnym składnikiem kodu genetycznego. Yoshihiro Furukawał i jego zespół z Uniwersytetu Tohoku odkryli w analizowanym meteorycie rybozę i inne ważne z biologicznego punktu widzenia cukry. Poinformowano o tym na łamach PNAS. Jeśli chcemy wiedzieć, jak powstało życie, musimy najpierw zrozumieć, jak tworzą się molekuły organiczne i jak wchodzą one w interakcje ze środowiskiem zanim jeszcze powstanie życie. Niestety większość śladów pochodzących z okresu przed pojawieniem się życia na Ziemi została zniszczona wskutek aktywności geologicznej naszej planety. Śladów takich należy więc szukać poza Ziemią, na przykład w meteorytach. Zawierają one bowiem zapis tego, jak wyglądał Układ Słoneczny w pierwszych okresach istnienia naszej planety. To zamrożone kapsuły czasu, stwierdza jeden z autorów najnowszych badań, astrobiolog Daniel Glavin z Goddard Space Fligh Center. Dotychczas w meteorytach znajdowano aminokwasy czy zasady azotowe nukleotydów. Jednak nigdy wcześniej nie znaleziono tam rybozy, która stanowi m.in. element strukturalny RNA. Samo znalezienie molekuł organicznych w meteorytach nie oznacza jeszcze, że to dzięki nim powstało życie na Ziemi. Pokazuje jednak, że istnieją naturalne procesy geologiczne, pozwalające na pojawienie się takich związków na ciałach pozbawionych życia, jak meteoryty czy planety. Zupełnie inną kwestią jest odkrycie w jaki sposób mogło dojść do połączenia takich molekuł i powstania życia. Jednak odnajdowanie kolejnych molekuł organicznych w przestrzeni kosmicznej oznacza, że życie mogło powstać również poza Ziemią. « powrót do artykułu
  7. Warzywa z rodziny kapustowatych zawierają molekułę, która hamuje rozwój nowotworów. O przeciwnowotworowych właściwościach brokuła, kalafiora, brukselki czy kapusty mówi się nie od dzisiaj. Również i my o tym informowaliśmy. W najnowszym numerze Science opublikowano zaś artykuł, z którego dowiadujemy się, że użycie pewnego składnika kapustowatych przeciwko genowi WWP1 hamuje rozwój nowotworów u zwierząt laboratoryjnych, które zostały genetycznie zmodyfikowane tak, by były podatne na nowotwory. Odkryliśmy nowy ważny czynnik, który wpływa na szlak krytyczny dla rozwoju nowotworu, enzym, który może być powstrzymany za pomocą naturalnego związku znajdującego się w brokułach i innych warzywach kapustnych. Szlak te jest nie tylko regulatorem wzrostu guza, ale również jego piętą achillesową, którą możemy wykorzystać podczas leczenia, mówi doktor Pier Paolo Pandolfi, dyrektor Centrum Nowotworów i Instytutu Badań nad Nowotworami w Beth Israel Deaconess Medical Center. W swoich organizmach posiadamy dobrze znany i silny gen supresorowy PTEN, którego zadaniem jest zapobiegania rozwojowi nowotworów. Jednocześnie jest to najczęściej zmutowany, kasowany i wyciszany gen w procesie rozwoju nowotworów. Niektóre dziedziczne mutacje tego genu pozwalają na określenie podatności danej osoby na zachorowanie na nowotwory. Jednak, jako że całkowita utrata genu PTEN prowadzi do pojawienia się potężnego i odpornego na uszkodzenia mechanizmu zapobiegającego rozprzestrzenianiu się komórek nowotworowych, nowotwory rzadko doprowadzają do usunięcia obu kopii PTEN. Radzą sobie w ten sposób, że guzy nowotworowe obniżają ekspresję PTEN. To zaś kazało się naukowcom zastanowić, czy przywrócenie aktywności PTEN do normalnego poziomu w obliczu już istniejącego nowotworu, doprowadzi do uruchomienia mechanizmu supresji guza. Pandolfi i jego zespół postanowili zidentyfikować molekuły, które regulują i aktywizują PTEN. Przeprowadzili serię eksperymentów na genetycznie zmodyfikowanych myszach oraz na ludzkich komórkach i odkryli, że gen WWP1, o którym wiadomo, że odgrywa rolę w rozwoju nowotworów, wytwarza enzym, który hamuje aktywność PTEN. Uczeni przeanalizowali kształt tej molekuły i stwierdzili, że niewielka molekuła I3C (indolo-3-karbinol), która występuje w brokułach i innych kapustnych, może być czynnikiem hamującym pronowotworowe działanie WWP1. Uczeni rozpoczęli więc eksperymenty na myszach, które zmodyfikowano tak, by łatwo rozwijały się u nich nowotwory. Okazało się, że gdy zwierzętom podawano naturalną I3C, prowadziło to do wyłączenia WWP1 i aktywizacji PTEN. Niestety, z dobroczynnych właściwości I3C nie da się skorzystać na własną rękę. Aby odnieść korzyści z działania tej molekuły musielibyśmy zjadać około 2,5 kilograma nieugotowanych brokułów dziennie. Dlatego też Pandolfi i jego zespół wciąż poszukują bardziej efektywny inhibitorów WWP1. Genetyczna lub farmaceutyczna dezaktywacja WWP1, czy to za pomocą technologii CRISPR czy I3C może aktywować funkcję PTEN i hamować rozwój guza, mówi Pandolfi. « powrót do artykułu
  8. Czy leczenie nowotworów bez chemio- czy radioterapii, nawet bez chirurgii jest możliwe? Biofizyk Khaled Barakat z University of Alberta pracuje nad innowacyjnymi immunoterapiami, które mają zwalczać wiele rodzajów raka dzięki pigułkom wzmacniającym układ odpornościowy. Na określenie tego pomysłu używamy słowa 'magia', gdyż koncepcja zakłada, że terapia nie jest związana z żadnym konkretnym nowotworem. Ma ona radzić sobie z problemami związanymi z każdym rodzajem nowotworów, stwierdza uczony. Po raz pierwszy o poszukiwaniu „magicznej pigułki” na raka Barakat poinformował przed czterema laty, gdy Alberta Cancer Foundation i Li Ka Shing Applied Virology Institute rozpoczęły warty 5,4 miliona dolarów projekt badawczy. Barakat stanął na czele zespołu złożonego z wybitnych onkologów, wirusologów, immunologów, chemików i farmaceutów. Do pomocy zaprzęgnięto też jeden z najszybszych superkomputerów na świecie Blue Gene/Q. Teraz, po czterech latach badań, zespół naukowy ogłosił, że wpadł na trop molekuły, która potencjalnie może posłużyć do stworzenia „magicznej pigułki”. To potężna molekuła. Wstępnie potwierdza, że dobrze wybraliśmy kierunek badań. A dzięki wytężonej pracy całego zespołu dokonujemy obiecujących postępów w badaniach nad kolejną molekułą, która ma inny cel, stwierdza Barakat. Nowotwory wykorzystują punkty kontrolne układu odpornościowego. To rodzaj molekularnych hamulców, które zapobiegają nadmiernej reakcji układu odpornościowego. Niektóre nowotwory potrafią aktywować wiele takich punktów, przez co rozwijający się guz nie jest atakowany przez limfocyty T. W ostatnich latach wielu specjalistów skupiło się na poszukiwaniu przeciwciał, które omijałyby punkto kontrolne i rekatywowały limfocyty T. W ubiegłym roku dwaj naukowcy, James Allison i Tasuku Honjo, otrzymali medycznego Nobla za badania nad sposobami walki z nowotworami z wykorzystaniem punktów kontrolnych układu immunologicznego. Terapia za pomocą przeciwciał monoklonalnych na zawsze zmieniło immunoterapię przeciwnowotworową. Jednak tego typu terapie obarczone są ryzykiem. Przeciwciała to duże molekuły, które mogą pozostawać w organizmie całymi miesiącami, co zwiększa prawdopobieństwo, że układ odpornościowy zacznie atakować własny organizm, niszcząc tkanki i narządy. Ponadto terapie za pomocą przeciwciał są kosztowne i skomplikowane. Barakat i jego zespół spędzili ostatnie cztery lata na próbach stworzenia, za pomocą komputera Blue Gene/Q małej molekuły, która reaktywowałaby unieruchomiony przez nowotwór układ odpornościowy i nie niosła ze sobą ryzyka powikłań. Gdy już stworzyli taką wirtualną molekułę, zsyntetyzowali ją. Ta już stworzona molekuła ma oddziaływać na punkt kontrolny PD-1 i powodować, że układ odpornościowy zaatakuje komórki czerniaka. Jednocześnie trwają prace nad drugą molekułą, oddziałującą na punkt kontrolny CTLA-4. Punkt PD-1 hamuje proliferację limfocytów T i wytwarzanie cytokin, z kolei CTLA-4 hamuje aktywację limfocytów T. Olbrzymią zaletą opracowywanych molekuł jest fakt, że organizm pozbywa się ich w ciągu godzin. Ponadto, jako że są zancznie mniejsze niż przeciwciała, mogą wniknąć głębiej w tkankę. Prawdopodobnie można je będzie również tanio wytwarzać i podawać w formie pigułki. A jako, że za cel biorą punkty kontrolne, mogą potencjalnie służyć do walki z wieloma rodzajami nowotworów, od czerniaka i raka piersi, poprzez chłoniaka po raka mózgu. Barakat i jego zespół założyli już firmę, której zadaniem jest wyjście poza uniwersyteckie badania laboratoryjne i rozpoczęcie testów na zwierzętach. Mają nadzieję, że uzyskają dofinansowanie od firmy farmaceutycznej, dzięki czemu będą mogli zatrudnić „armię chemików”. Zadaniem tego zespołu, na którego czele miałby stanąć chemik Frederick West, będzie stworzenie kilku tysięcy analogów i derywatów wspomnianych molekuł oraz ich przetestowanie. W ten sposób uczeni powinni znaleźć molekułę o optymalnej budowie. Taką, która nie tylko będzie spełniała postawione przed nią zadania, ale będzie też odpowiednio rozpuszczalna, silna i miała możliwe najniższą toksyczność. To jak układanie kostki Rubika. Mamy działające rozwiązanie. Teraz musimy wszystko odpowiednio poskładać. Aby to zrobić potrzebujemy zespołu 60 chemików. Obecnie mamy ich 4-5, stwierdza Barakat. Nowo założona firma nazywa się HEKA Therapeutics. Heka był bogiem magii w starożytnym Egipcie. Magia jest wymagająca, ale możliwa, mówi Barakat. Ze szczegółami badań można zapoznać się w Scientific Reports. « powrót do artykułu
  9. Wszystko ma gdzieś swój początek. Także wszechświat. W wyniku Wielkiego Wybuchu powstało niewiele pierwiastków, takich jak różne odmiany jąder wodoru, helu i litu. Naukowcy wiedzą więc, jak mogły wyglądać pierwsze atomy i pierwsze molekuły. Jednak dotychczas nie udawało się odnaleźć w przestrzeni kosmicznej pierwszych molekuł. Z teoretycznych przewidywań wynika, że powinien nią być zhydratowany jon helu (HeH+), jednak dotychczas nie udało się go zaobserwować. Na łamach najnowszego numeru Nature właśnie doniesiono o pierwszym niezaprzeczalnym odkryciu molekuły HeH+ w przestrzeni kosmicznej. Eksperci poszukiwali HeH+ od lat 70. ubiegłego wieku w mgławicach. Szczególnie interesowały ich mgławice planetarne. Jednak przez kilkadziesiąt lat niczego nie znaleziono, a wcześniejsze doniesienia o odkryciu HeH+ okazywały się wątpliwe. Jednym z problemów był fakt, że światło emitowane przez zhydratowany jon helu jest łatwo absorbowane w atmosferze Ziemi. Teleskopy nie mogły więc go zarejestrować. Nie dały sobie rady nawet te umieszczone wysoko w górach. Naukowcy postanowili więc wykorzystać Stratospheric Observatory for Infrared Astronomy (SOPHIA) czyli obserwatorium umieszczone na pokładzie samolotu. W końcu, dzięki wyniesieniu instrumentów w startosferę, udało się zaobserwować HeH+. Molekułę znaleziono w mgławicy planetarnej NGC 7027 oddalonej od Ziemi o 2900 lat świetlnych. Odkrycie rzuca nowe światło na mgławice planetarne oraz na samą molekułę. Dzięki niemu można będzie udoskonalić obecne teorie i modele. Przede wszystkim zaś znalezienie HeH+ potwierdziło pewne przypuszczenia dotyczące najwcześniejszego wszechświata. Cała chemia wszechświata rozpoczęła się od tego jonu. Przed dekady astronomia zmagała się z brakiem dowodów na jego istnienie w przestrzeni kosmicznej. Jednoznaczne odkrycie to szczęśliwy koniec długotrwałych badań. « powrót do artykułu
×
×
  • Dodaj nową pozycję...