Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' beta-amyloid' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. Choroba Alzheimera i towarzyszący jej rozpad osobowości przerażają wielu, a dostępne leki, delikatnie mówiąc, nie grzeszą skutecznością. Dzięki pracy zespołu dr. Piotra Pięty z IChF PAN mogą powstać nowe, efektywniejsze farmaceutyki. Naukowcy pokazali, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu wpływa na sposób ich oddziaływania z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Kolejnym krokiem ma być testowanie w tym modelu potencjalnych leków. Naukowcy są m.in. po to, żeby wyjaśniać, jak funkcjonuje świat. Ich badania często wydają się abstrakcyjne, ale jak się okazuje mogą całkiem realnie pomóc wielu z nas. Tak jest z pracą zespołu dr. Piotra Pięty z IChF PAN. Wykazał on, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu – substancji uznawanej za "winowajcę" w chorobie Alzheimera – wpływa na sposób oddziaływania tych cząstek z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Naukowcy z IChF pracują na syntetycznych, modelowych błonach komórkowych, zbudowanych najprościej jak można sobie wyobrazić, ale jednocześnie podobnych do tych, jakie można znaleźć w ludzkim mózgu. Błony te składają się tylko z mieszaniny fosfolipidów (bez receptorów i innych białek błonowych) i dzięki temu umożliwiają badaczom skupienie się wyłącznie na tym, jak rozmaite cząsteczki wpływają na barierę zapewniającą trwałość komórek. Chcieliśmy się dowiedzieć, co cząsteczki beta-amyloidu tak naprawdę robią z tymi błonami, wyjaśnia dr Pięta, czy one się osadzają na ich powierzchni, czy je niszczą, czy rozpuszczają, a jeśli rozpuszczają, to dlaczego […]. Pytań jest wiele, odpowiedzi dopiero się pojawiają. Nam w naszych badaniach udało się kontrolować wielkość oligomerów, czyli niedużych cząsteczek złożonych z kilku amyloidów, i dzięki temu mogliśmy sprawdzić, w jaki sposób ta wielkość wpływa na mechanizm ich oddziaływania z modelową błoną - mówi dr Pięta. W początkowych badaniach nad alzheimerem badano mózgi osób chorych, a w zasadzie już zmarłych na tę chorobę. W mózgach znajdowano złogi zbudowane z długich nici – fibryli - i przez wiele, wiele lat uważano, że to te fibryle są głównym czynnikiem patogennym. Ostatnie badania, w tym te prowadzone przez dr. Piętę, pokazują jednak coś innego. To nie długie fibryle są winowajcą, lecz raczej ich prekursory, oligomery beta-amyloidu. Amyloidy są produkowane w sposób ciągły u każdego z nas z białek błonowych; są odcinane enzymatycznie. Problem się pojawia, gdy przestają działać mechanizmy regulujące ich ilość i "wygląd". Nietoksyczne amyloidy zawierają 39-43 aminokwasy, a ich drugorzędowa struktura to alfa-helisa (kształt nieco przypominający łańcuch DNA). Te "niedobre", zmienione, przypominają raczej harmonijki. Najgorsze są takie, które mają 42 aminokwasy. Za pomocą mikroskopii sił atomowych przeprowadziliśmy dwa typy pomiarów, jeden dla cząsteczek małych, o średnicy ok. 2 nm, a drugi dla nieco większych – o średnicy ok. 5 nm - wyjaśnia naukowiec. Okazało się, że małe oligomery działają zupełnie inaczej niż duże. Duże po osadzeniu na błonie agregują, tworząc długie fibryle. Wszystkie zjawiska, które przebiegają z ich udziałem, zachodzą na powierzchni modelowej błony komórkowej i nie prowadzą do jej zniszczenia. Małe oligomery to zupełnie inna historia. One błonę niszczą. Na początku tworzą w niej różnych rozmiarów i kształtów dziury - wyjaśnia dr Pięta. Po utworzeniu dziury małe oligomery wnikają do wnętrza błony i wraz z cząsteczkami fosfolipidów błonowych tworzą globularne micele. Te micelarne kompleksy dyfundują na zewnątrz i w ten sposób usuwają fosfolipidy z błony, prowadząc do jej rozpuszczania. Mechanizm oddziaływania z błoną zmienia się wraz ze zmianą wielkości oligomeru, lecz w przypadku obu badanych przez nas amyloidów wywołuje spadek trwałości mechanicznej błony o ⁓50%. Innymi słowy, zarówno małe, jak i duże oligomery są toksyczne, choć mechanizm ich działania jest inny. Nasze badania wyjaśniają te mechanizmy i godzą sprzeczne raporty publikowane w literaturze - precyzuje badacz. Na razie wyjaśniamy tylko podstawowe mechanizmy - mówi dr Pięta, ale w kolejnym etapie naszych badań dołożymy do tego układu cząsteczki leków i sprawdzimy, które z nich potrafią modyfikować oddziaływanie amyloidu z błoną, a zatem, być może, i przebieg choroby. Podejmiemy badania cząsteczek, które np. mogłyby zdezaktywować beta-amyloid, przyczepiając się do niego, zanim zniszczy błonę. Rozpoczęliśmy współpracę z farmaceutami i biochemikami. Możemy im zasugerować, czy ich leki oddziałują z amyloidami, a jeżeli tak, to na jakim poziomie i jak powinny się zachowywać, żeby np. podwyższać trwałość błony komórkowej - podsumowuje naukowiec. Badania prowadzone w IChF PAN z pewnością przyczyniają się do lepszego zrozumienia mechanizmów prowadzących do choroby Alzheimera, a tym samym mają szansę zrewolucjonizować sposób jej leczenia. « powrót do artykułu
  2. Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu. U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty. Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu. Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób. Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu. Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią. « powrót do artykułu
  3. Po raz pierwszy naukowcom udało się zidentyfikować bardzo wczesny etap toksycznego oddziaływania beta-amyloidu na neurony. Poznanie przyczyny dysfunkcji komórkowej może pomóc w opracowaniu skutecznych metod terapii choroby Alzheimera (ChA). W mózgach pacjentów z ChA, u których rozwinęły się już objawy kliniczne, występują blaszki beta-amyloidu. W ramach wielu podejść terapeutycznych próbuje się je usuwać, ale z umiarkowanymi jak dotąd sukcesami. Kluczowe jest, byśmy wykrywali i leczyli chorobę o wiele wcześniej. Z tego powodu skoncentrowaliśmy się na hiperaktywnych neuronach, które występują na bardzo wczesnym etapie [choroby] - na długo przed pojawieniem się demencji - wyjaśnia prof. Arthur Konnerth z Uniwersytetu Technicznego w Monachium. Wskutek nadmiernej aktywacji inne neurony z obwodu stale dostają fałszywe sygnały, co prowadzi do upośledzenia procesów przetwarzania. Konnerth, jego doktorant Benedikt Zott i inni członkowie zespołu zidentyfikowali wyzwalacz tego procesu. Wyniki ich badań ukazały się w piśmie Science. Niemcy tłumaczą, że neurony komunikują się za pośrednictwem neuroprzekaźników. Do najważniejszych neuroprzekaźników pobudzających należy kwas L-glutaminowy. Jest on uwalniany do szczeliny synaptycznej. Później, by umożliwić transmisję kolejnych sygnałów, transmiter jest usuwany dzięki wychwytowi zwrotnemu, rozkładowi przez enzymy czy dyfuzji. Naukowcy odkryli, że w szczelinie synaptycznej hiperaktywnych neuronów zbyt długo występowały wysokie stężenia kwasu L-glutaminowego. Było to skutkiem działania beta-amyloidu, który blokował transport (wychwyt) przekaźnika z przestrzeni synaptycznej. Ekipa przetestowała ten mechanizm, posługując się cząsteczkami beta-amyloidu pozyskanymi z próbek pobranych od pacjentów oraz różnymi modelami mysimi. Każdorazowo uzyskiwano podobne rezultaty. Akademicy zaobserwowali, że za blokadę nie odpowiadają blaszki, ale wczesna forma rozpuszczalna β-amyloidu. Niemcy dodają, że początkowo beta-amyloid występuje w postaci monomerów, potem pojawiają się agregaty dimerów, a na końcu tworzą się dojrzałe włókna. Blokada zwrotnego wychwytu kwasu L-glutaminowego jest powodowana przez rozpuszczalne dimery. Nasze dane zapewniają klarowne dowody na szybki i bezpośredni toksyczny wpływ dimerów - podkreśla Benedikt Zott. Naukowcy chcą wykorzystać nowo zdobytą wiedzę, by jeszcze dokładniej zrozumieć komórkowe mechanizmy ChA i dzięki temu opracować nowe strategie leczenia wczesnych stadiów choroby. « powrót do artykułu
  4. Na horyzoncie pojawiły się nowe możliwości zapobiegania chorobie Alzheimera (ChA). Badacze zidentyfikowali bowiem związki z ambrozji bylicolistnej (Ambrosia artemisiifolia), które pomagają neuronom przeżyć w obecności beta-amyloidu. A. artemisiifolia jest rośliną inwazyjną. Pochodzi z Ameryki Północnej, lecz obecnie ma kosmopolityczny zasięg. Jej pyłek jest silnym alergenem. Blaszki beta-amyloidu są neurotoksyczne. Pięć leków zatwierdzonych do terapii ChA tylko opóźnia rozwój choroby. Nic więc dziwnego, że naukowcy nie ustają w poszukiwaniu nowych, skuteczniejszych, metod terapii/zapobiegania. Won Keun Oh z Seulskiego Uniwersytetu Narodowego analizował 300 ekstraktów roślinnych pod kątem aktywności anty-ChA. Wtedy właśnie Koreańczycy natknęli się na ambrozję bylicolistną. Postanowili wyizolować i scharakteryzować strukturę związków z A. artemisiifolia, które odpowiadają za zaobserwowaną aktywność neuroprotekcyjną. Z całych roślin wyizolowano 14 związków, które wydawały się chronić neurony przed toksycznością beta-amyloidu. Ich budowę określono m.in. za pomocą spektrometrii mas i spektroskopii magnetycznego rezonansu jądrowego. Siedem z nich, w tym terpenoidy i koniugaty spermidyny, opisano już wcześniej, pozostałe to całkowicie nowe terpenoidy. Gdy 2 najbardziej aktywne nowe związki dodano do szalek, w obecności beta-amyloidu przeżyło ok. 20% więcej komórek (w porównaniu do sytuacji, kiedy nie stosowano żadnej interwencji). « powrót do artykułu
  5. Peptydowe produkty degradacji prekursorowego białka APP (ang. Amyloid Precursor Protein, APP) to najważniejsze białka w patofizjologii choroby Alzheimera (ChA). Należy do nich beta-amyloid. Co ciekawe, dotąd normalna, fizjologiczna, funkcja APP pozostawała owiana tajemnicą. Ostatnio belgijscy naukowcy wykazali jednak, że wiążąc się ze specyficznym receptorem, moduluje ono przekazywanie sygnału przez neurony. Autorzy artykułu z pisma Science uważają, że modulowanie tego receptora może pomóc w leczeniu alzheimera i innych chorób mózgu. Zespół z Vlaams Instituut voor Biotechnologie oraz Uniwersytetu Katolickiego w Leuven przypomina, że od zidentyfikowania APP minęło ponad 30 lat. Późniejsze badania koncentrowały się na 1) biodegradacji/enzymatycznym trawieniu APP, które prowadzi do powstania beta-amyloidu, a także na 2) procesie akumulacji Aβ. Nie wiadomo było jednak, co z fizjologiczną funkcją samego APP. By znaleźć odpowiedź na to pytanie, dr Heather Rice postanowiła zidentyfikować receptor, z którym APP wchodzi w interakcje. Wiedzieliśmy, że APP działa za pośrednictwem fragmentu białka uwalnianego poza komórkę. By zrozumieć jego funkcję, musieliśmy poszukać partnerów białkowych na powierzchni komórki. Belgowie zidentyfikowali receptor zlokalizowany w synapsie. Odkryliśmy, że uwalniana część [ektodomena] APP - ang. secreted ectodomain of APP, sAPP - wiąże się z receptorem GABABR1a, co prowadzi do stłumienia komunikacji neuronalnej. Podczas eksperymentach na myszach zjawisko to hamowało uwalnianie pęcherzyków synaptycznych z neuroprzekaźnikiem, a także modulowało przekaźnictwo synaptyczne i plastyczność. Nowo zidentyfikowana rola APP może leżeć u podłoża nieprawidłowości sieci neuronalnych obserwowanych zarówno w mysim modelu ChA, jak i u ludzi na etapie poprzedzającym kliniczny początek choroby. Ekscytująco jest myśleć, że terapia obierająca na cel ten receptor mogłaby złagodzić anomalie występujące u pacjentów - podkreśla Bart De Strooper. Joris de Wit dodaje, że implikacje badań mogą wykraczać poza alzheimera, gdyż sygnalizację GABABR powiązano z całą gamą chorób neurologicznych i psychiatrycznych, w tym z padaczką, depresją, uzależnieniami czy schizofrenią. « powrót do artykułu
  6. U podłoża choroby Alzheimera (ChA) mogą leżeć zaburzenia równowagi pH w endosomach astrocytów. Naukowcy ze Szkoły Medycznej Uniwersytetu Johnsa Hopkinsa dodawali inhibitory deacetylazy histonów (HDAC) do hodowli mysich astrocytów z wariantem genowym ApoE4 (wersją genu apolipoproteiny E, która stanowi czynnik ryzyka alzheimeryzmu). Zabieg ten likwidował problem z pH i usprawniał usuwanie beta-amyloidu. W Stanach Zjednoczonych inhibitory HDAC zostały dopuszczone do użytku u pacjentów z nowotworami krwi, ale nie z ChA. Inhibitory deacetylaz histonów nie mogą pokonać bariery krew-mózg (BKM), co stanowi poważny problem w leczeniu chorób mózgu. Jeśli w eksperymentach z ludzkimi astrocytami okaże się, że inhibitory HDAC działają na nie tak samo, jak na komórki mysie, Amerykanie spróbują zaprojektować inhibitory, które pokonają BKM. W 2000 r. naukowcy z paru instytucji, w tym z Uniwersytetu Johnsa Hopkinsa, odkryli, że w neuronach osób, które są predestynowane do alzheimera, występuje o wiele więcej, w dodatku większych, endosomów. To sugerowało, że problemy z endosomami prowadzą do akumulacji beta-amyloidu. Do transportu enodosomy wykorzystują szaperony - białka, które wiążą się do specyficznego ładunku. To, czy takie wiązanie w ogóle zajdzie i jakie będzie, zależy od pH w endosomie. Tylko w odpowiednich warunkach endosom "podpłynie" bowiem pod powierzchnię i gdy będzie trzeba, ponownie zanurkuje w głąb komórki. W błonie endosomów znajdują się białka transportujące protony, a jak wiadomo, ilość H+ w komórce determinuje jej pH. Kiedy dochodzi do zbytniego zakwaszenia endosomu, ładunek zostaje uwięziony w endosomie gdzieś w głębi komórki. Kiedy zaś w endosomie robi się zbyt zasadowo, ładunek zbyt długo przebywa przy powierzchni komórki. By ustalić, czy w ChA występuje taka nierównowaga pH, Hari Prasad przejrzał literaturę przedmiotu; chodziło o porównanie ekspresji genów w chorych i zdrowych mózgach. Zestawiając dane dla 15 mózgów z alzheimerem i 12 zdrowych, Amerykanin zauważył, że 10 ze 100 genów, które najczęściej ulegając zmniejszonej ekspresji, ma związek z przepływem protonów w komórce. W innym zestawie próbek tkanki mózgowej (od 96 chorych i 82 zdrowych osób) okazało się, że u ludzi z ChA ekspresja transportera protonów - NHE6 - była circa o 50% niższa. By zmierzyć pH w endosomach bez ich uszkadzania, Prasad i prof. Rajini Rao posłużyli się pH-wrażliwymi sondami, które były wchłaniane i emitowały światło. Okazało się, że linie mysich komórek z wariantem ApoE4 miały bardziej kwasowe endosomy (średnie pH wynosiło 5,37) niż linie bez tego allelu (w tym przypadku średnie pH wynosiło 6,21). Bez prawidłowo funkcjonującego NHE6 endosomy stawały się zbyt zakwaszone i przebywały wewnątrz astrocytów, nie wywiązując się ze swoich zadań związanych z usuwaniem beta-amyloidu - wyjaśnia Rao. Amerykanie zauważyli także, że białko LRP1, które wychwytuje beta-amyloid na zewnątrz astrocytów i dostarcza go do endosomów, także występuje o połowę mniej licznie na powierzchni mysich astrocytów z allelem ApoE4. By znaleźć sposób na odnowienie funkcji NHE6, Prasad przeszukiwał bazy danych z badań na drożdżach. Okazało się, że u drożdży inhibitory HDAC zwiększają ekspresję genu NHE6 (a ten jest bardzo podobny u różnych gatunków, m.in. myszy, muszek i ludzi). Prasad i Rao przetestowali na hodowlach mysich komórek 9 typów inhibitorów HDAC. Stwierdzono, że inhibitory o szerokim spektrum zwiększały ekspresję NHE6 do poziomu występującego w astrocytach bez wariantu ApoE4. Akademicy zauważyli też, że inhibitory HDAC korygowały nierównowagę pH w endosomach i odtwarzały LRP1 na powierzchni astrocytów. Łącznie poprawiało to usuwanie beta-amyloidu. « powrót do artykułu
×
×
  • Dodaj nową pozycję...