Search the Community
Showing results for tags 'mięśnie szkieletowe'.
Found 3 results
-
Całkowita odbudowa trwale uszkodzonych mięśni nadal pozostaje wyzwaniem dla medycyny. Międzynarodowy zespół kierowany m.in. przez dr. Marco Costantiniego z IChF PAN zaprezentował rozwiązanie, które umożliwia odbudowę znacznie uszkodzonych mięśni szkieletowych z niespotykaną dotąd skutecznością. Mięśnie stanowią największą tkankę w naszym ciele. Są niezbędne do wykonania jakiegokolwiek ruchu, a bez nich nie bylibyśmy w stanie wykonać nawet najprostszych czynności. Każdego dnia nasz układ mięśniowy wykonuje nieprawdopodobną ilość ruchów, a każdy z nich wymaga zaangażowania milionów włókien tkanki mięśniowej począwszy od kurczenia się, skracania, powrotu do pierwotnego kształtu – czytamy w komunikacie Instytutu Chemii Fizycznej PAN (IChF PAN). Każdy mięsień ma jednak swoje ograniczenia i wytrzymałość, a więc podobnie do innych tkanek w ciele, może zostać uszkodzony. Nagłe szarpnięcie lub skręcenie może je nadwyrężyć prowadząc do krótkotrwałego dyskomfortu. Z kolei w skrajnych przypadkach niektórych chorób, takich jak nowotwory, dystrofia mięśni lub wskutek uszkodzenia mechanicznego np. w wyniku wypadku lub operacji, całkowity powrót mięśnia do stanu pierwotnego może być niemożliwy. Pomimo imponującej zdolności naszego organizmu do codziennej regeneracji, w niektórych przypadkach mięśnie szkieletowe nie mogą zostać w pełni obudowane. Tuż po uszkodzeniu pojawia się zapalenie i obrzęk, a wraz z nimi organizm zaczyna produkować maleńkie włókna będące prekursorami mięśnia. Powstają one w procesie miogenezy, a ich rolą jest stworzenie nowej, odbudowanej, w pełni sprawnej tkanki mięśniowej - przypomina IChF PAN. Przy niewielkich uszkodzeniach, mięsień może całkowicie wyzdrowieć, lecz gdy uszkodzenie jest znaczące, naprawa dużych ubytków masy mięśniowej bywa niemożliwa, a szkody są nieodwracalne. To sprawia, że odbudowa i poprawa funkcjonalności mięśni jest jednym z największych wyzwań biomedycznych naszych czasów. Niedawno międzynarodowy zespół naukowców kierowany przez dr. Marco Costantiniego z IChF PAN oraz dr. Cesare’a Gargioliego z Uniwersytetu Tor Vergata w Rzymie zaprezentował rozwiązanie wytwarzania substytutu mięśnia na bazie biokompatybilnego żelu, które strukturą przypomina makaron typu spaghetti. Żel ten produkowany jest z polimerów naturalnych innowacyjną metodą biodruku 3D za pomocą urządzenia mikroprzepływowego umożliwiając wydruk obiektu o dowolnym rozmiarze. Co najważniejsze, żel zawiera komórki mięśniowe, będące prekursorami włókien mięśniowych, które stopniowo narastają w polimerowej matrycy. Wszczepienie do uszkodzonego mięśnia takiego żelu biomimetycznego z komórkami umożliwia regenerację uszkodzonych tkanek. Nasz system biodruku został zaprojektowany tak, aby dokładnie naśladować wysoce anizotropową architekturę mięśni szkieletowych, co skutkuje skutecznym wytworzeniem prekursorów mięśni w dowolnej formie – opisuje dr Costantini, cytowany w komunikacie. Wydrukowany żel wraz z komórkami poddawany jest hodowli in vitro przez tydzień w celu stymulacji wzrostu komórek, a następnie wszczepia się go do uszkodzonych tkanek pacjenta. Naukowcy przedstawili skuteczną regenerację mięśni u myszy, u której uraz był na tyle duży, że pełne wyleczenie skutkujące przywróceniem pierwotnych funkcji mięśnia nie byłoby możliwe nawet po kilku miesiącach. Na dodatek, częściowa regeneracja trwałaby pięć razy dłużej, osiągając nie więcej niż 20 proc. regeneracji. Zaprezentowany przez badaczy biodrukowany żel zawierający komórki mięśniowe umożliwił przywrócenie o 90 proc. rzeczywistych funkcji. Ponadto, mięśnie zostały odbudowane w zaledwie 20 dni, sprawiając, że zaprezentowany żel jest obiecującym materiałem do zastosowań biomedycznych wspomagających regenerację tkanek – informuje IChF PAN. Przywrócenie masy i funkcjonalności o 90 proc. usuniętego mięśnia w zaledwie 20 dni to absolutny rekord, który motywuje nas do dalszego zgłębiania tego podejścia w najbliższej przyszłości. Teraz musimy rozszerzyć naszą platformę na wytwarzanie żelu na większą skalę, aby wspierać regenerację mięśni u dużych zwierząt. Mamy nadzieję, że ta technologia niebawem będzie gotowa do zastosowania klinicznego u ludzi – twierdzi dr Marco Costantini. « powrót do artykułu
-
- mięśnie szkieletowe
- odbudowa
-
(and 2 more)
Tagged with:
-
Im większa masa mięśniowa, tym mniejsze ryzyko insulinooporności – twierdzi dr Preethi Srikanthan z Uniwersytetu Kalifornijskiego w Los Angeles. Wcześniejsze studia wykazały, że bardzo niska masa mięśniowa stanowi czynnik ryzyka insulinooporności, ale dotąd nie prowadzono badań dotyczących odwrotnego scenariusza, czyli czy zwiększenie masy mięśniowej do przeciętnej i powyżej średniej (niezależnie od stopnia otyłości) poprawia zdolność organizmu do regulowania poziomu glukozy. Srikanthan podkreśla, że badania jej zespołu abstrahują od zagadnienia odchudzania się w celu poprawienia profilu metabolicznego. Zamiast tego nasze studium wskazuje na rolę podtrzymywania sprawności fizycznej i budowania masy mięśniowej. To zachęcająca wiadomość dla pacjentów z nadwagą, którzy mają problem ze zrzuceniem zbędnych kilogramów, ponieważ okazuje się, że sam wysiłek wkładany w ruch i utrzymywanie sprawności […] przyczynia się do zmian metabolicznych. Amerykanie przyglądali się związkowi między masą mięśni szkieletowych a insulinoopornością i zaburzeniami metabolizmu glukozy w próbie 13.644 osób. Badani mieli ponad 20 lat, nie byli w ciąży i ważyli więcej niż 35 kg. Okazało się, że im większa masa mięśniowa, w porównaniu do rozmiarów ciała, tym lepsza insulinooporność i mniejsze ryzyko stanu przedcukrzycowego oraz cukrzycy. Srikanthan postuluje więc, by lekarze rodzinny i diabetolodzy monitorowali nie tylko wskaźnik masy ciała i obwód talii, ale także masę mięśniową.
-
Hibernacja nie osłabia baribali (niedźwiedzi czarnych), a przynajmniej nie tak, jak można by się tego spodziewać. Prowadzony przez T.D. Lohuisa zespół naukowców z Alaska Department of Fish and Game odkrył, że siła mięśni szkieletowych misia obniża się podczas zimowego odpoczynku w o wiele mniejszym stopniu niż u człowieka, który musiałby podobnie długo leżeć w łóżku. Naukowcy studiowali, czy i ewentualnie jak brak ruchu oraz post wpływają na funkcjonowanie mięśni drapieżnika. Ponieważ niedźwiedzie przebywają przez kilka zimowych miesięcy w ciasnym pomieszczeniu bez jedzenia, ale mogą zachować białka mięśni i po przedwczesnym wybudzeniu przejawiać konsekwentną aktywność, zmierzyliśmy [u zwierzęcia przebywającego w gawrze — przyp. red.] siłę mięśni szkieletowych, odporność na zmęczenie oraz, w warunkach in vivo [czyli na żywym zwierzęciu], kurczliwość nietkniętych włókien mięśniowych [...]. Okazało się, że po 110 dniach odosobnienia i głodówki w legowisku niedźwiedź utracił ok. 29% siły mięśniowej. I tu porównanie: człowiek przestrzegający zrównoważonej diety, ale zmuszony do leżenia przez 90 dni "plackiem" w łóżku, traci 54% siły mięśni. Astronauci słabną w warunkach braku ciążenia jeszcze szybciej. Po 17-dniowym przebywaniu w przestrzeni kosmicznej tracą 11% mocy (Physiological and Biochemical Zoology).
-
- niedźwiedź czarny
- baribal
- (and 9 more)