Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pierwszy użyteczny laser z germanu

Rekomendowane odpowiedzi

Naukowcy z MIT-u zaprezentowali pierwszy laser z germanu, który generuje fale światła o długości przydatnej w komunikacji. To jednocześnie pierwszy laser germanowy działający w temperaturze pokojowej.

German, w przeciwieństwie do wielu innych materiałów, może być łatwo wykorzystany we współczesnym przemyśle półprzewodnikowym. Ponadto, co niezwykle ważne, skonstruowanie wspomnianego lasera dowodzi, że, wbrew wcześniejszym przewidywaniom, półprzewodniki z pośrednim pasmem wzbronionym mogą posłużyć do produkcji laserów. To niezwykle ważny krok w kierunku budowy komputerów przesyłających dane, a niewykluczone że i dokonujących obliczeń, za pomocą światła w miejsce elektryczności.

Rosnąca wydajność obliczeniowa układów scalonych oznacza, że pomiędzy poszczególnymi komponentami komputera trzeba przesyłać coraz więcej danych. Wykorzystywanie do tego celu prądu elektrycznego ma tę wadę, że im szybciej chcemy przesłać informacje, tym więcej energii musimy zużyć. Znacznie bardziej wydajną metodą jest użycie światła, jednak tutaj pojawia się konieczność opracowania taniego sposobu integracji podzespołów optycznych i elektronicznych w jednym układzie scalonym. Wprowadzenie każdego nowego rodzaju podzespołów do układu scalonego to poważne wyzwanie. Trzeba bowiem znaleźć taki materiał, który pozwala na wyprodukowanie pożądanego podzespołu o potrzebnych właściwościach, a który jednocześnie dobrze wiąże się chemicznie z warstwami układu scalonego znajdującymi się pod nim i nad nim. Ponadto proces nakładania nowego podzespołu musi odbywać się w temperaturach i środowisku chemicznym odpowiednich dla innych materiałów tworzących układ scalony. Wiele takich materiałów źle "współpracuje" z krzemem, dlatego np. proces umieszczania w chipie laserów z arsenku galu jest bardzo skomplikowany i kosztowny. Tymczasem techniki pracy z germanem są dobrze poznane, znacznie prostsze i tańsze. German wykorzystywany jest od lat przez większość producentów półprzewodników. Służy on do produkcji rozciągniętego krzemu, w którym elektrony poruszają się szybciej, niż w zwykłym krzemie.

We współczesnej elektronice wykorzystywane są takie półprzewodniki jak krzem, german czy arsenek galu. Ten ostatni jest materiałem o bezpośrednim paśmie wzbronionym. W środowisku naukowym krążyła opinia, że materiały z pośrednim pasmem wzbronionym nigdy nie wygenerują światła laserowego - mówi Jurgen Michel z Electronic Materials Research Group, który brał udział w opracowaniu germanowego lasera. Tego uczą w szkole - wtóruje mu profesor Lionel Kimerling, szef grupy badawczej.

Dzieje się tak dlatego, gdyż w półprzewodniku elektron znajdujący się w paśmie przewodzenia może przyjąć jeden z dwóch stanów. W jednym z nich uwalnia energię w postaci fotonu, w drugim - w inny sposób, np. w postaci ciepła.

W materiałach o bezpośrednim paśmie wzbronionym stan, w którym emitowany jest foton, jest niższym stanem energetycznym. W półprzewodnikach o paśmie pośrednim, niższym stanem jest drugi z nich. Tak więc w sposób naturalny elektron emituje foton tylko w półprzewodnikach o paśmie bezpośrednim.

Naukowcom z MIT-u udało się jednak zmusić elektrony germanu do przejścia w wyższy, emitujący fotony, stan energetyczny.

Jedna z metod to wzbogacenie kryształu germanu o fosfor, który posiada pięć zewnętrznych elektronów, podczas gdy german ma ich cztery. Każdy atom fosforu daje zatem jeden dodatkowy elektron, który wypełnia niższy stan energetyczny powodując, że pobudzone elektrony germanu pozostają w stanie wyższym i emitują foton. Z wyliczeń uczonych wynika, że optymalny poziom domieszkowania germanu wynosi 1020 atomów fosforu na każdy centymetr sześcienny germanu. Obecnie udało im się opracować technologię, pozwalającą na domieszkowanie na poziomie 1019 i już zaobserwowano emisję światła laserowego.

Drugim sposobem na zmuszenie elektronów germanu do przyjęcia wyższego stanu energetycznego jest zmniejszenie różnicy pomiędzy stanem wyższym a niższym, co zwiększa prawdopodobieństwo, iż elektrony znajdą się w wyższym stanie. Aby tego dokonać, uczeni rozciągnęli german umieszczając go w podwyższonej temperaturze na krzemie. Po schłodzeniu krzem nie skurczył się, a stygnące atomy germanu, próbując dopasować się do atomów krzemu, nieco zwiększyły odległości pomiędzy sobą. Odpowiednio manipulując kątem i odległościami wiązań atomowych, uczeni byli w stanie zmienić wartości poziomów energetycznych. Przy okazji, jak pochwalił się Kimerling, jego zespół wynalazł technikę umieszczania germanu na krzemie i kontrolowania całego procesu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Co za ironia, od lat używano germanu do rozciągania krzemu, teraz okazało się, że można stworzyć wydajniejszą technologię rozciągając german za pomocą krzemu :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Cóż, nosił koń po błoniach, ponieśli i konia… :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

drobna uwaga. zwyczajowo mowi sie o prostej i skosnej przerwie energetycznej, odpowiednio zamiast bezposredniej i posredniej. nie nalezy tlumaczyc tego doslownie.

 

druga rzecz, to 'strained' nie oznacza w tym przypadku rozciagniety tylko naprezony, a uczeni nie manipulowali katem i odleglosciami wiazan atomowych - to lekkie naduzycie :D zmiany te sa wynikiem naprezen, ktore mozna jedynie wytworzyc. dla zainteresowanych - naprezenia te beda oczywiscie zmienialy sie wraz z temperatura. mozna to dosc prosto policzyc uwzgledniajac rozszerzalnosc termiczna obu materialow. ponadto ciekawostka sam wzrost germanu na krzemie. jest takie pojecie 'grubosc krytyczna', przy ktorej material relaksuje, tj. energia zwiazana z naprezeniami jest uwalniana, generowane sa wtedy glownie defekty strukturalne. swoja droga, to jedna z metod wytwarzania kropek kwantowych.

 

informacyjnie: ten poziom domieszkowania rowny 10^(-20) cm^(-3), to ok. 2% fosforu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Misja Psyche jeszcze nie dotarła do celu, a już zapisała się w historii podboju kosmosu. Głównym jej celem jest zbadanie największej w Układzie Słonecznym asteroidy Psyche. Przy okazji NASA postanowiła przetestować technologię, z którą eksperci nie potrafili poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera. Agencja poinformowała właśnie, że z Psyche na Ziemię trafił 15-sekudowy materiał wideo przesłany z odległości 31 milionów kilometrów z maksymalną prędkością 267 Mbps. To niemal 2-krotnie szybciej niż średnia prędkość szerokopasmowego internetu w Polsce.
      To, czego właśnie dokonała NASA jest nie zwykle ważnym osiągnięciem. Pozwoli bowiem na znacznie sprawniejsze zbieranie danych z instrumentów pracujących w przestrzeni kosmicznej i zapewni dobrą komunikację z misjami załogowymi odbywającymi się poza orbitą Ziemi.
      Sygnał z Psyche potrzebował około 101 sekund, by dotrzeć do Ziemi. Dane, przesyłane przez laser pracujący w bliskiej podczerwieni trafiły najpierw do Hale Teelscope w Palomar Observatory w Kalifornii. Następnie przesłano je do Jet Propulsion Laboratory w Południowej Kalifornii, gdzie były odtwarzane w czasie rzeczywistym podczas przesyłania. Jak zauważył Ryan Rogalin, odpowiedzialny za elektronikę odbiornika w JPL, wideo odebrane w Palomar zostało przesłane przez internet do JPL, a transfer danych odbywał się wolniej, niż przesyłanie danych z kosmosu. Podziwiając tempo transferu danych nie możemy zapomnieć też o niezwykłej precyzji, osiągniętej przez NASA. Znajdujący się na Psyche laser trafił z odległości 31 milionów kilometrów w 5-metrowe zwierciadło teleskopu. Sam teleskop to również cud techniki. Jego budowę ukończono w 1948 roku i przez 45 lat był najdoskonalszym teleskopem optycznym, a jego zwierciadło główne jest drugim największym zwierciadłem odlanym w całości.
      Po co jednak prowadzić próby z komunikacją laserową, skoro od dziesięcioleci w przestrzeni kosmicznej z powodzeniem przesyła się dane za pomocą fal radiowych? Otóż fale radiowe mają częstotliwość od 3 Hz do 3 Thz. Tymczasem częstotliwość pracy lasera podczerwonego sięga 300 THz. Zatem transmisja z jego użyciem może być nawet 100-krotnie szybsza. Ma to olbrzymie znaczenie. Chcemy bowiem wysyłać w przestrzeń kosmiczną coraz więcej coraz doskonalszych narzędzi. Dość wspomnieć, że Teleskop Webba, który zbiera do 57 GB danych na dobę, wysyła je na Ziemię z prędkością dochodzącą do 28 Mb/s. Zatem jego systemy łączności działają 10-krotnie wolniej, niż testowa komunikacja laserowa.
      Zainstalowany na Psyche Deep Space Optical Communication (DSOC) uruchomiono po raz pierwszy 14 listopada. Przez kolejne dni system sprawdzano i dostrajano, osiągając coraz szybszy transfer danych i coraz większą precyzję ustanawiania łącza z teleskopem. W tym testowym okresie przesłano na Ziemię łącznie 1,3 terabita danych. Dla porównania, misja Magellan, która w latach 1990–1994 badała Wenus, przesłała w tym czasie 1,2 Tb.
      Misja Psyche korzysta ze standardowego systemu komunikacji radiowej. DSOC jest systemem testowym, a jego funkcjonowanie nie będzie wpływało na powodzenie całej misji.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańska ustawa CHIPS and Science Act, która wywołała spory między USA a Unią Europejską, przynosi pierwsze efekty. Jej celem jest m.in. zachęcenie do budowy w USA nowych fabryk półprzewodników. Firmy mogą liczyć na ulgi podatkowe czy dopłaty. Przeznaczono na ten cel 39 miliardów USD i najwyraźniej zachęciło to gigantów. Micron zapowiedział, że zainwestuje do 100 miliardów dolarów w nową fabrykę w stanie Nowy Jork, TMSC – który buduje wartą 12 miliardów USD fabrykę w Arizonie – wybuduje drugi zakład, zwiększając wartość inwestycji do 40 miliardów, Samsung chce za 17 miliardów wybudować fabrykę w Teksasie, a Intel rozpoczął wartą 20 miliardów USD inwestycję w dwie fabryki w Ohio.
      Każda z tych fabryk będzie potrzebowała setek inżynierów i techników. Tymczasem obecnie USA wytwarzają 12% światowych półprzewodników, podczas gdy w roku 1990 było to 37%. Nic więc dziwnego, że w ostatnich dekadach zapotrzebowanie na odpowiednio wykształconą kadrę zmniejszało się, co spowodowało stagnację na rynku edukacyjnym. Wraz z CHIPS Act zaczęło się to zmieniać. Za zainteresowaniem przemysłu idzie oferta edukacji. Bo zapotrzebowanie będzie olbrzymie. Pod koniec ubiegłego roku amerykański przemysł półprzewodnikowy poszukiwał około 20 000 pracowników. Profesor Peter Bermel z Purdue University szacuje, że nawet jeśli skutkiem CHIPS Act będzie umiarkowany wzrost na amerykańskim rynku półprzewodników, to w ciągu najbliższych 5 lat potrzebnych będzie co najmniej 50 000 dodatkowych pracowników. Dlatego też koledże i uczelnie wyższe zwiększają swoją ofertę dla studentów, a przemył półprzewodnikowy próbuje im w tym pomóc.
      Intel, który chce w Ohio stworzyć „Silicon Heartland” przeznaczył 50 milionów dolarów dla 80 szkół wyższych w tym stanie. Za te pieniądze szkoły chcą doposażyć swoje pracownie, wynająć specjalistów i poszerzyć ofertę dla studentów. Intel zaś wspomoże je swoimi radami, doświadczeniem, stypendiami oraz dostępem do własnych centrów badawczych. Będzie to o tyle łatwiejsze, że już w 2011 roku władze stanowe przyjęły inicjatywę, w ramach której wspomagają uczelnie w zwiększeniu liczby studentów kierunków inżynieryjnych, technologicznych i medycznych. Dzięki niej na przykład, od 2021 roku studenci Ohio State University mogą uczyć się procesów wytwarzania układów scalonych w uniwersyteckim laboratorium, bez potrzeby korzystania z bardzo drogiego specjalistycznego clean-roomu. Uczelnia pracuje też nad narzędziami rzeczywistości wirtualnej i rzeczywistości rozszerzonej, dzięki którym studenci poczują się tak, jakby pracowali w prawdziwej fabryce półprzewodników.
      Kilkaset kilometrów dalej firma SkyWater Technology buduje wartą 1,8 miliarda dolarów fabrykę, a sąsiadujący z niż Purdu University uruchomił interdyscyplinarny Semiconductor Degrees Program, dzięki któremu studenci różnych wydziałów mogą nabyć umiejętności potrzebnych podczas pracy w przemyśle półprzewodnikowym. Uniwersytet rozpoczął też program edukacji pracowników na potrzeby SkyWater.
      Nie wszystkie stanowiska w przemyśle półprzewodnikowym wymagają ukończenia wyspecjalizowanych studiów. Zdaniem Intela, kluczem do sukcesu są pracownicy po lokalnych szkołach średnich. Intel rozbudowuje swoje fabryki w Arizonie, Nowym Meksyku i Oregonie. Będzie potrzebował dodatkowych 7000 pracowników. Około 40% tych stanowisk czeka na ludzi po dwuletnich szkołach, a tylko na 20% stanowisk wymagany jest tytuł licencjata, magistra lub doktora.
      Inne firmy również inwestują w swoich przyszłych pracowników. Samsung i Silicon Labs wspomagają lokalne koledże i szkoły techniczne oferując szkolenia, stypendia czy letnie staże. Samsung na przykład dołączył do lokalnej inicjatywy Austin Community College, w ramach której uczniowie, którzy chcą dodatkowo zdobyć zawód technika przemysłu półprzewodnikowego, szkolą się przez 2 dni w tygodniu. Piątkowym uczniom firma pokrywa całość kosztów nauki.
      Problemy z kadrą techniczną są widoczne na całym świecie. W dużej mierze są one spowodowane popularnością studiów informatycznych. Bardzo wiele osób o zainteresowaniach technicznych wybiera karierę programisty. Jednak, jako że programiści również są potrzebni, przemysł półprzewodnikowy nie próbuje zachęcać ich do zmiany zawodu, a stara się, by więcej osób decydowało się na pracę na rynku nowoczesnych technologii.
      CHIPS and Science Act został podpisany przez prezydenta Bidena w sierpniu 2022 roku. Spotkał się z ostrą krytyką ze strony Unii Europejskiej, która oskarżyła USA o protekcjonizm. Ustawa przewiduje dofinansowanie rozwoju amerykańskiego przemysłu półprzewodnikowego łączną kwotą w wysokości 280 miliardów dolarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na MIT powstały ogniwa fotowoltaiczne cieńsze od ludzkiego włosa, które na kilogram własnej masy wytwarzają 18-krotnie więcej energii niż ogniwa ze szkła i krzemu. Jeśli uda się skalować tę technologię, może mieć do olbrzymi wpływ produkcję energii w wielu krajach. Jak zwraca uwagę profesor Vladimir Bulivić z MIT, w USA są setki tysięcy magazynów o olbrzymiej powierzchni dachów, jednak to lekkie konstrukcje, które nie wytrzymałyby obciążenia współczesnymi ogniwami. Jeśli będziemy mieli lekkie ogniwa, te dachy można by bardzo szybko wykorzystać do produkcji energii, mówi uczony. Jego zdaniem, pewnego dnia będzie można kupić ogniwa w rolce i rozwinąć je na dachu jak dywan.
      Cienkimi ogniwami fotowoltaicznymi można by również pokrywać żagle jednostek pływających, namioty, skrzydła dronów. Będą one szczególnie przydatne w oddalonych od ludzkich siedzib terenach oraz podczas akcji ratunkowych.
      To właśnie duża masa jest jedną z przyczyn ograniczających zastosowanie ogniw fotowoltaicznych. Obecnie istnieją cienkie ogniwa, ale muszą być one montowane na szkle. Dlatego wielu naukowców pracuje nad cienkimi, lekkimi i elastycznymi ogniwami, które można będzie nanosić na dowolną powierzchnię.
      Naukowcy z MIT pokryli plastik warstwą parylenu. To izolujący polimer, chroniący przed wilgocią i korozją chemiczną. Na wierzchu za pomocą tuszów o różnym składzie nałożyli warstwy ogniw słonecznych i grubości 2-3 mikrometrów. W warstwie konwertującej światło w elektryczność wykorzystali organiczny półprzewodnik. Elektrody zbudowali ze srebrnych nanokabli i przewodzącego polimeru. Profesor Bulović mówi, że można by użyć perowskitów, które zapewniają większą wydajność ogniwa, ale ulegają degradacji pod wpływem wilgoci i tlenu. Następnie krawędzie tak przygotowanego ogniwa pomarowano klejem i nałożono na komercyjnie dostępną wytrzymałą tkaninę. Następnie plastik oderwano od tkaniny, a na tkaninie pozostały naniesione ogniwa. Całość waży 0,1 kg/m2, a gęstość mocy tak przygotowanego ogniwa wynosi 370 W/kg. Profesor Bulović zapewnia, że proces produkcji można z łatwością skalować.
      Teraz naukowcy z MIT planują przeprowadzenie intensywnych testów oraz opracowanie warstwy ochronnej, która zapewni pracę ogniw przez lata. Zdaniem uczonego już w tej chwili takie ogniwo mogłoby pracować co najmniej 1 lub 2 lata. Po zastosowaniu warstwy ochronnej wytrzyma 5 do 10 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...