Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Nowy fotorezyst dla technologii 20 nanometrów

Recommended Posts

Toshiba poinformowała o opracowaniu fotorezystu, który współpracuje z litografią w ekstremalnie dalekim ultrafiolecie (EUV) i jest pierwszym nadającym się do wykorzystania w 20-nanometrowym procesie produkcyjnym.

Szczegóły wynalazku zostaną omówione podczas 22nd International Microprocesses and Nanotechnology Conference, która odbędzie się 19 listopada w Sapporo.

Obecnie stosowane fotorezysty, korzystające z polimerów, nie są odpowiednie do wykorzystania w technologiach poniżej 20 nanometrów. Spowodowane jest to ich rozdzielczością.

Prace nad urządzeniami litograficznymi zdolnymi do produkcji układów scalonych, których wielkość bramki nie przekracza 20 nanometrów są bardzo zaawansowane. Jednak dotychczas brakowało odpowiedniego fotorezystu.

Toshiba opracowała przydatny fotorezyst wykorzystując do jego produkcji odmianę materiału zwanego truxene. Dzięki niemu już wyprodukowano testowy wzorzec o liniach grubości 22 nanometrów. Badania wykazały też, że jest on o 40% bardziej trwały od powszechnie używanego polihydroksystyrenu.

Badania Toshiby dają nadzieję, że założenia zawarte w International Technology Roadmap for Semiconductors, zostaną zrealizowane. Zgodnie z nimi w roku 2013 rozpocznie się masowa produkcja układów w technologii 20 nanometrów.

Share this post


Link to post
Share on other sites

Witam.

To ja się zapytam co to jest 'fotorezyst'?

Chyba ma być fotorezystor lub foto rezystancja.

Share this post


Link to post
Share on other sites

Fotorezyst to materiał, który jest czuły na światło o ściśle określonej długości fali.

To część "foto"

Druga część ("rezyst") to od odporności na środki trawiące.

W skrócie proces wygląda tak, że powierzchnię przeznaczoną do trawienia pokrywa się fotorezystem, a następnie naświetla przez kliszę. Tu właśnie mamy światło o odpowiedniej długości fali, najczęściej UV. W drukarniach, czy fabrykach PCB używa się UV o długości fali 366 nm, co przy okazji determinuje rozdzielczość (w praktyce jest ona rzędu mikrometrów). W zależności od tego, czy jest to proces negatwyowy czy pozytywowy, w trakcie wywoływania usuwa się naświetlony, bądź nieutrwalony fotorezyst. To co zostało zabezpiecza materiał przed dostępem środka trawiącego, a zatem i przed wytrawieniem. Po skończonym procesie pozostały fotorezyst usuwa się najczęściej rozpuszczalnikami.

Większa rozdzielczość wymaga mniejszej długości fali, a i sama klisza to już nie taki banał, stosuje się na przykład klisze holograficzne.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      AMD zaprezentowało niedawno 7-nanometrowe procesory z rodziny Ryzen 3, a Samsung może w ciągu najbliższych miesięcy rozpocząć produkcję kości w technologii 5-nanometrów. Stało się to możliwe dzięki temu, że w końcu poradzono sobie z problemami trapiącymi litografię w ekstremalnie dalekim ultrafiolecie (EUV).
      Świat czekał na litografię EUV od 15 lat. To technika litograficzna kolejnej generacji, która pracuje ze źródłem światła o długości fali 13,4–13,7 nanometra.
      Możliwości EUV nie kończą się jednak na kościach AMD i Samsunga. W ciągu 6 lat możemy być świadkami debiutu pierwszych układów z bramką o długości 2 nanometrów. Postęp oznacza też, że świat znowu odskoczył Chinom. Państwo środka może nie być w stanie dorównać możliwościom technologicznym firm z USA, Korei Południowej i Tajwanu przez kolejnych 10–15 lat. Chiny importują większość układów scalonych, sprzedaż najnowszego sprzętu litograficznego do Chin jest zablokowana, nałożono też ograniczenia na zatrudnianie przez chińskie firmy czołowych światowych specjalistów od litografii.
      Chińskie zapóźnienie to m.in. wynik mniejszych wydatków na prace badawczo-rozwojowe. W 2018 roku największy chiński producent półprzewodników, Semiconductor Manufacturing International, wydał na prace badawczo-rozwojowe 550 milionów dolarów. Rok wcześniej Intel przeznaczył na ten cel ponad 13 miliardów USD.
      Dzięki EUV w ciągu najbliższej dekady możemy zejść do poziomu 2-nanometrowych układów scalonych. Co dalej? Trudno powiedzieć. Musimy zdać sobie sprawę, że odległości pomiędzy atomami krzemu w sieci krystalicznej wynoszą około 0,27 nanometrów. Oznacza to, że 2-nanometrowa bramka logiczna będzie miała szerokość zaledwie 7 atomów. Można się spodziewać wielu różnych propozycji nowych architektur. Producenci półprzewodników będą musieli coś wymyślić, zanim pojawi się technologia pozwalająca wytwarzać jeszcze mniejsze bramki logiczne. Na nią przyjdzie nam jednak sporo poczekać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Toshiba wyprodukowała skaner sklepowy, który nie wymaga kodów kreskowych. Urządzenie ma wbudowaną kamerę, co umożliwia automatyczną identyfikację towarów, w tym sprawiających trudności warzyw i owoców. Ogranicza to udział kasjera i przyspiesza cały proces.
      Keiichi Hasegawa z Toshiby podkreśla, że pozbawione zazwyczaj kodów kreskowych owoce i warzywa mogą stanowić wyzwanie zwłaszcza dla pracowników okresowych.
      W przypadku skanera ORS (Object Recognition Scanner) od początku eliminowany jest szum tła. Na obrazie z kamery widać tylko produkt, tło jest ciemne, dlatego identyfikacja jest bardzo szybka nawet wtedy, gdy obiekty się poruszają. Podczas demonstracji zastosowano 3 gatunki jabłek: fuji, jonagold i matsu. Fuji i jonagold są do siebie podobne, więc jeśli ktoś się na tym nie zna, może je łatwo pomylić. ORS poradzi sobie z tym zadaniem, bazując na niewielkich różnicach barwy i wzorów. Problemu nie stanowią też puszki z piwem i kupony.
      Hasegawa podkreśla, że uczenie skanera towarów w sklepie nie byłoby praktyczne, dlatego firma pracuje nad bazą towarów, także sezonowych warzyw i owoców.
       
       
    • By KopalniaWiedzy.pl
      Toshiba zamknie 3 ze swoich 6 fabryk układów scalonych w Japonii. Koncern chce w ten sposób obniżyć koszty i skupić się na niektórych segmentach rynku półprzewodników.
      Fabryki zostaną zamknięte w pierwszej połowie przyszłego roku. Pozostałe trzy zakłady też nie będą pracowały pełną parą. Japońska firma zapowiedziała, że w grudniu 2012 fabryki będą miały przerwę.
      „Toshiba reaguje na kryzys ekonomiczny i zmniejszony popyt na produkty konsumenckie, szczególnie na rynku pecetów i telewizorów w Unii Europejskiej i Stanach Zjednoczonych" - czytamy w firmowym oświadczeniu.
      Kryzys ekonomiczny daje się we znaki wielu producentom. Ostatnio informowaliśmy, że Globalfoundries zrezygnowało z planów budowy jednej fabryki i wstrzymało prace przy budowie drugiej.
    • By KopalniaWiedzy.pl
      Sól kuchenna pozwoliła inżynierom z Singapuru opracować metodę gęstszego upakowania danych w dyskach twardych. Obecnie dostępne HDD mogą przechowywać do 625 gigabitów na calu kwadratowym powierzchni. Singapurska technologia pozwoli na zwiększenie upakowania od 1,9 do 3,3 terabita. Innymi słowy, w najbliższej przyszłości w sklepach mogą pojawić się dyski o nawet pięciokrotnie większej pojemności niż obecnie.
      Azjatyccy eksperci dodali chlorek sodu do roztworu używanego w procesie litograficznym. To pozwoliło na tworzenie bardzo uporządkowanych nanostruktur o średnicy 4,5 nanometra każda. We współczesnych dyskach twardych to ziarno ma średnicę 7-8 nanometrów. Wziąwszy pod uwagę fakt, że pojedynczy bit przechowywany jest w grupie „ziaren" możliwe było nawet 5-krotne zwiększenie gęstości zapisu.
      Niezwykle ważną cechę nowej technologii jest to, że współpracuje ona ze współcześnie wykorzystywanym sprzętem. Producenci nie będą więc musieli inwestować w niezwykle drogie urządzenia do litografii. Wystarczy niewielka zmiana składu używanego płynu.
    • By KopalniaWiedzy.pl
      Najpopularniejszą techniką wykorzystywaną przy produkcji układów scalonych jest fotolitografia. problem jednak w tym, że długość fali światła ogranicza rozdzielczość tej techniki, a zatem ogranicza możliwości zmniejszania poszczególnych elementów.
      Tymczasem do produkcji prototypowych układów wykorzystywana jest litografia elektronowa, która pozwala na uzyskanie większej rozdzielczości. Jej wadą jest natomiast znacznie mniejsza prędkość pracy niż przy fotolitografii. Co prawda można ją przyspieszyć, ale kosztem zmniejszenia rozdzielczości.
      Dotychczas najdoskonalsza litografia elektronowa pozwalała na uzyskanie rozdzielczości rzędu 25 nanometrów, czyli niewiele większej od eksperymentalnej 32 nanometrów zaprezentowanej przez niektórych producentów urządzeń.
      Tymczasem w MIT Research Laboratory of Electronic zaprezentowano szybką litografię elektronową, która pozwala na uzyskanie rozdzielczości 9 nanometrów. W połączeniu w innymi właśnie powstającymi technologiami pozwala to mieć nadzieję, że w przyszłości metoda ta będzie wykorzystywana w masowej produkcji układów scalonych.
      Dotychczas rozdzielczość zwiększano stosując światło o coraz mniejszej długości fali. Pracuje się nad wykorzystaniem ekstremalnie dalekiego ultrafioletu. Jest to jednak trudne zadanie, gdyż konieczne jest dostosowywanie układów optycznych do coraz mniejszej długości fali, a same źródła takiego światła są bardzo mało wydajne.
      Litografia polega, w skrócie, na pokryciu plastra krzemu światłoczułym materiałem tzw. fotorezystem i naświetleniu go według odpowiedniego wzorca. Tam, gdzie światło pada na fotorezyst, materiał zostanie utwardzony. Następnie usuwamy warstwy utwardzone bądź nieutwardzone, tworząc w ten sposób schemat połączeń.
      Główna różnica pomiędzy litografią elektronową a fotolitografią jest taka, że w tej pierwszej metodzie układ scalony jest tworzony ścieżka po ścieżce, co wymaga bardzo dużo czasu. W fotolitografii światło pada przez odpowiednią maskę od razu na całą powierzchnię odpowiednio przygotowanego plastra krzemowego i za jednym razem tworzy wymagany wzór.
      Litografię elektronową można przyspieszyć jeśli spowodujemy, by na fotorezyst padało mniej elektronów. Jednak mniej elektronów oznacza mniejszą energię promienia, a elektrony o niższej energii ulegają większemu rozproszeniu i jest ono tym bardziej widoczne, im głębiej w fotorezyst wnikają. Dlatego też podczas litografii elektronowej używa się generalnie wyższych energii, co jednak skutkuje wolniejszą pracą.
      Magistraci Vitor Manfrinato, Lin Lee Cheong i Donald Winston we współpracy z profesorami Karlem Berggrenem i Henym Smithem, wykorzystali dwie sztuczki, które pozwoliły im na zmniejszenie energii strumienia elektronów.
      Po pierwsze użyli cieńszej warstwy fotorezystu, co zmniejszyło rozpraszanie elektronów, a po drugie wykorzystali roztwór... soli kuchennej do utwardzenia tych regionów fotorezystu, które otrzymały nieco większą dawkę elektronów. Obszary, do których dotarło nieco mniej elektronów nie uległy utwardzeniu.
      Profesor fizyki Pieter Kruit z Uniwersytetu Technologicznego w Delft i współzałożyciel firmy Mapper, która zbudowała system do litografii elektronowej składający się ze 110 równoległych źródeł elektronów, jest pod wrażeniem prac uczonych z MIT-u. Zauważa, że systemy o niższej energii są nie tylko szybsze, ale też mniejsze i łatwiejsze w budowie. W miarę zwiększania energii strumienia elektronów dochodzi się bowiem do takiego momentu, że całość staje się tak duża, a izolacji pomiędzy poszczególnymi elektrodami musi być tak wiele, że stworzenie takiego systemu jest niemożliwe.
      Kruit wątpi jednocześnie, czy producenci układów scalonych wykorzystają dokładnie taki fotorezyst, jaki powstał na MIT. Jego zdaniem jest on nieco zbyt czuły. Ilość energii dostarczanej do elektrod urządzeń litograficznych nieznacznie się waha i przy zbyt czułym fotorezyście wahania te będą widoczne w wielkości podzespołów powstających na układzie scalonym. „Ale to kwestia niewielkiej modyfikacji fotorezystu, a jego producenci cały czas wprowadzają takie modyfikacje" - zauważa Kruit.
×
×
  • Create New...